9,171 research outputs found

    Flow-distributed spikes for Schnakenberg kinetics

    Get PDF
    This is the post-print version of the final published paper. The final publication is available at link.springer.com by following the link below. Copyright @ 2011 Springer-Verlag.We study a system of reaction–diffusion–convection equations which combine a reaction–diffusion system with Schnakenberg kinetics and the convective flow equations. It serves as a simple model for flow-distributed pattern formation. We show how the choice of boundary conditions and the size of the flow influence the positions of the emerging spiky patterns and give conditions when they are shifted to the right or to the left. Further, we analyze the shape and prove the stability of the spikes. This paper is the first providing a rigorous analysis of spiky patterns for reaction-diffusion systems coupled with convective flow. The importance of these results for biological applications, in particular the formation of left–right asymmetry in the mouse, is indicated.RGC of Hong Kon

    Effects of site substitutions and concentration on upconversion luminescence of Er³⁺-doped perovskite titanate

    Get PDF
    Author name used in this publication: Jianhua Hao2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The wavelet-NARMAX representation : a hybrid model structure combining polynomial models with multiresolution wavelet decompositions

    Get PDF
    A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is introduced for nonlinear system identification. Polynomial models play an important role in approximation theory, and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the basis functions have the property of localization in both time and frequency, outperform many other approximation schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise the global property of polynomials and the local property of wavelet representations simultaneously, in this study polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-output system might involve a large number of basis functions and therefore a great number of model terms. Experience reveals that only a small number of these model terms are significant to the system output. A new fast orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also introduced in this study to determine which terms should be included in the final model

    Ruptured pseudocyst of pancreas presenting with paraplegia: a case report

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures

    Get PDF
    Metallic nanoparticles (NPs) support localized surface plasmon resonances (LSPRs), which enable to concentrate sunlight at the active layer of solar cells. However, full-wave modeling of the plasmonic solar cells faces great challenges in terms of huge computational workload and bad matrix condition. It is tremendously difficult to accurately and efficiently simulate near-field multiple scattering effects from plasmonic NPs embedded into solar cells. In this work, a preconditioned volume integral equation (VIE) is proposed to model plasmonic organic solar cells (OSCs). The diagonal block preconditioner is applied to different material domains of the device structure. As a result, better convergence and higher computing efficiency are achieved. Moreover, the calculation is further accelerated by two-dimensional periodic Green’s functions. Using the proposed method, the dependences of optical absorption on the wavelengths and incident angles are investigated. Angular responses of the plasmonic OSCs show the super-Lambertian absorption on the plasmon resonance but near-Lambertian absorption off the plasmon resonance. The volumetric method of moments and explored physical understanding are of great help to investigate the optical responses of OSCs

    Author Correction: Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.

    Get PDF
    The original version of this Article contained an error in the spelling of the authors J. H. Joly and N. A. Graham, which were incorrectly given as J. Jolly and N. Graham. Additionally, the affiliation of both authors with 'Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089' and N. A. Graham with 'Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089' was inadvertently omitted. This has now been corrected in both the PDF and HTML versions of the Article

    Establishing dynamic impact function for house pricing based on surrounding multi-attributes: Evidence from Taipei City

    Get PDF
    [[abstract]]The objective of the research is aimed for a solution that is to establish the dynamic impact function of surrounding multi-attribute for house pricing. It is also able to measure the ripple effect and allows the hedonic parameter estimates to vary from point-to-point. A comprehensive literature review is carried out to obtain an adequate theoretical basis for the corresponding hypothesis and concepts. The proposed dynamic impact function for multi- attributes is then constructed based on the characteristics of surrounding facilities. Adopting the convenience sampling criteria of 95% confidence level on the data sampling and 10% limit of error in a 5−95% proportion, we collect the empirical data of 39 yearly house sales in the investigated urban areas of Taipei city focusing on housing prices and then utilize them for evaluating and adjusting the function. The actual house price and that of proposed function affected by Mass Rapid Transit (MRT) stations are analysed, resulting in the correlation coefficient at 0.946 (single attribute) and 0.944 (multi-attribute), respectively. The findings support that proposed function can highly represent the house pricing pattern and be an accurate tool for appraisers.[[notice]]補正完
    corecore