19 research outputs found

    Mosaic Convergence of Rodent Dentitions

    Get PDF
    BACKGROUND:Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. METHODOLOGY/PRINCIPAL FINDINGS:Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. CONCLUSION/SIGNIFICANCE:The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary

    Karyotypic analyses and morphological comments on the endemic and endangered Brazilian painted tree rat Callistomys pictus (Rodentia, Echimyidae)

    No full text
    The genus Callistomys belongs to the rodent family Echimyidae, subfamily Echimyinae, and its only living representative is Callistomys pictus, a rare and vulnerable endemic species of the state of Bahia, Brazil. Callistomys has been previously classified as Nelomys, Loncheres, Isothrix and Echimys. In this paper we present the karyotype of Callistomys pictus, including CBG and GTG-banding patterns and silver staining of the nucleolus organizer regions (Ag-NORs). Comments on Callistomys pictus morphological traits and a compilation of Echimyinae chromosomal data are also included. Our analyses revealed that Callistomys can be recognized both by its distintinctive morphology and by its karyotype

    Adaptive diversity of incisor enamel microstructure in South American burrowing rodents (family Ctenomyidae, Caviomorpha)

    Get PDF
    The aim of this study was to analyse the morphofunctional and adaptive significance of variation in the upper incisor enamel microstructure of South American burrowing ctenomyids and other octodontoid taxa. We studied the specialized subterranean tooth-digger †Eucelophorus chapalmalensis (Pliocene – Middle Pleistocene), and compared it with other fossil and living ctenomyids with disparate digging adaptations, two fossorial octodontids and one arboreal echimyid. Morphofunctionally significant enamel traits were quite similar among the species studied despite their marked differences in habits, digging behaviour and substrates occupied, suggesting a possible phylogenetic constraint for the Octodontoidea. In this context of relative similarity, the inclination of Hunter–Schreger bands, relative thickness of external index (EI) and prismless enamel zone were highest in †Eucelophorus, in agreement with its outstanding craniomandibular tooth-digging specialization. Higher inclination of Hunter–Schreger bands reinforces enamel to withstand high tension forces, while high external index provides greater resistance to wear. Results suggest increased frequency of incisor use for digging in †Eucelophorus, which could be related to a more extreme tooth-digging strategy and/or occupancy of hard soils. Higher external index values as recurring patterns in distant clades of tooth-digging rodents support an adaptive significance of this enamel trait

    Redescription and phylogenetic relationships of Spermophilus citelloides (Rodentia: Sciuridae: Xerinae), a ground squirrel from the Middle Pleistocene – Holocene of Central Europe

    No full text
    Spermophilus citelloides is a poorly known Old World ground squirrel from the Middle Pleistocene – early Holocene of Central Europe that has only been briefly described previously. Here, we expand our understanding of its craniodental morphology by providing the first detailed description of numerous S. citelloides materials from five Late Pleistocene and early Holocene localities of Hungary and Slovakia. Spermophilus citelloides is recognised as a valid species that is characterised by a shallow, gently domed skull with massive and short rostrum, broad interorbital region, strong zygomatic process of the frontal, posteromedially expanding lacrimal, posteriorly narrowed hard palate, wedge-shaped horizontal process of the palatine, small to absent suboptic foramen, thin condyloid neck of the mandible, M3 possessing a metaloph, and anteroposteriorly elongated m3 with strong hypoconulid and entoconulid. A cladistic analysis of 103 craniodental characters scored across 32 ingroup taxa recovers S. citelloides as the sister taxon of living spotted ground squirrel, S. suslicus, thus confirming the hypothesis of close phylogenetic relationships between the taxa. These relationships are further confirmed by the geometric morphometric analysis of the occlusal outlines of the premolars and molars. The alternative hypothesis allying S. citelloides with S. citellus is not supported by our analyses
    corecore