74 research outputs found

    The Darlington and Northallerton Long Term Asthma Study: pulmonary function

    Get PDF
    BACKGROUND: The Darlington and Northallerton Asthma Study is an observational cohort study started in 1983. At that time little was published about long term outcome in asthma and the contribution of change in reversible disease or airway remodelling to any excess deterioration in function. The study design included regular review of overall and fixed function lung. We report the trends over fifteen years. METHODS: All asthmatics attending secondary care in 1983, 1988 and 1993 were recruited. Pulmonary function was recorded at attendance and potential best function estimated according to protocol. Rate of decline was calculated over each 5-year period and by linear regression analysis in those seen every time. The influence of potential explanatory variables on this decline was explored. RESULTS: 1724 satisfactory 5-year measurements were obtained in 912 subjects and in 200 subjects on all occasions. Overall rate of decline (ml/year (95%CI)) calculated from 5-year periods was FEV1 ♂41.0 (34.7–47.3), ♀28.9 (23.2–34.6) and best FVC ♂63.1 (55.1–71.2)ml/year, ♀45.8 (40.0–51.6).The principal association was with age. A dominant cubic factor suggested fluctuations in the rate of change in middle life with less rapid decline in youth and more rapid decline in the elderly. Rapid decline was possibly associated with short duration. Treatment step did not predict rate of deterioration. CONCLUSIONS: Function declined non-linearly and more rapidly than predicted from normal subjects. It reports for the first time a cubic relationship between age and pulmonary function. This should be taken into account when interpreting other articles reporting change in function over time

    Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient

    Get PDF
    We compared autumn decomposition rates of European alder leaves at four sites along the Lasset–Hers River system, southern France, to test whether changes in litter decomposition rates from upstream (1,300 m elevation) to downstream (690 m) could be attributed to temperature-driven differences in microbial growth, shredder activity, or composition of the shredder community. Alder leaves lost 75–87% of original mass in 57 days, of which 46–67% could be attributed to microbial metabolism and 8–29% to shredder activity, with no trend along the river. Mass loss rates in both fine-mesh (excluding shredders) and coarse-mesh (including shredders) bags were faster at warm, downstream sites (mean daily temperature 7–8°C) than upstream (mean 1–2°C), but the differ- ence disappeared when rates were expressed in heat units to remove the temperature effect. Mycelial biomass did not correlate with mass loss rates. Faster mass loss rates upstream, after temperature correction, evidently arise from more efficient shredding by Nemourid stoneflies than by the Leuctra-dominated assemblage downstream. The influence of water temperature on decomposition rate is therefore expressed both directly, through microbial metabolism, and indirectly, through the structure of shredder commu- nities. These influences are evident even in cold water where temperature variation is small

    The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic variation may underlie phenotypic variation in chronic obstructive pulmonary disease (COPD) in subjects with and without alpha 1 antitrypsin deficiency (AATD). Genotype specific sub-phenotypes are likely and may underlie the poor replication of previous genetic studies. This study investigated subjects with AATD to determine the relationship between specific phenotypes and <it>TNFα </it>polymorphisms.</p> <p>Methods</p> <p>424 unrelated subjects of the PiZZ genotype were assessed for history of chronic bronchitis, impairment of lung function and radiological presence of emphysema and bronchiectasis. A subset of subjects with 3 years consecutive lung function data was assessed for decline of lung function. Four single nucleotide polymorphisms (SNPs) tagging <it>TNFα </it>were genotyped using TaqMan<sup>® </sup>genotyping technologies and compared between subjects affected by each phenotype and those unaffected. Plasma TNFα levels were measured in all PiZZ subjects.</p> <p>Results</p> <p>All SNPs were in Hardy-Weinberg equilibrium. A significant difference in rs361525 genotype (p = 0.01) and allele (p = 0.01) frequency was seen between subjects with and without chronic bronchitis, independent of the presence of other phenotypes. TNFα plasma level showed no phenotypic or genotypic associations.</p> <p>Conclusion</p> <p>Variation in <it>TNFα </it>is associated with chronic bronchitis in AATD.</p

    Chronic Obstructive Pulmonary Disease, inflammation and co-morbidity – a common inflammatory phenotype?

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is and will remain a major cause of morbidity and mortality worldwide. The severity of airflow obstruction is known to relate to overall health status and mortality. However, even allowing for common aetiological factors, a link has been identified between COPD and other systemic diseases such as cardiovascular disease, diabetes and osteoporosis. COPD is known to be an inflammatory condition and neutrophil elastase has long been considered a significant mediator of the disease. Pro-inflammatory cytokines, in particular TNF-α (Tumour Necrosis Factor alpha), may be the driving force behind the disease process. However, the roles of inflammation and these pro-inflammatory cytokines may extend beyond the lungs and play a part in the systemic effects of the disease and associated co-morbidities. This article describes the mechanisms involved and proposes a common inflammatory TNF-α phenotype that may, in part, account for the associations

    Neutrophil elastase reduces secretion of secretory leukoproteinase inhibitor (SLPI) by lung epithelial cells: role of charge of the proteinase-inhibitor complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secretory leukoproteinase inhibitor (SLPI) is an important inhibitor of neutrophil elastase (NE), a proteinase implicated in the pathogenesis of lung diseases such as COPD. SLPI also has antimicrobial and anti-inflammatory properties, but the concentration of SLPI in lung secretions in COPD varies inversely with infection and the concentration of NE. A fall in SLPI concentration is also seen in culture supernatants of respiratory cells exposed to NE, for unknown reasons. We investigated the hypothesis that SLPI complexed with NE associates with cell membranes <it>in vitro</it>.</p> <p>Methods</p> <p>Respiratory epithelial cells were cultured in the presence of SLPI, varying doses of proteinases over time, and in different experimental conditions. The likely predicted charge of the complex between SLPI and proteinases was assessed by theoretical molecular modelling.</p> <p>Results</p> <p>We observed a rapid, linear decrease in SLPI concentration in culture supernatants with increasing concentration of NE and cathepsin G, but not with other serine proteinases. The effect of NE was inhibited fully by a synthetic NE inhibitor only when added at the same time as NE. Direct contact between NE and SLPI was required for a fall in SLPI concentration. Passive binding to cell culture plate materials was able to remove a substantial amount of SLPI both with and without NE. Theoretical molecular modelling of the structure of SLPI in complex with various proteinases showed a greater positive charge for the complex with NE and cathepsin G than for other proteinases, such as trypsin and mast cell tryptase, that also bind SLPI but without reducing its concentration.</p> <p>Conclusion</p> <p>These data suggest that NE-mediated decrease in SLPI is a passive, charge-dependent phenomenon <it>in vitro</it>, which may correlate with changes observed <it>in vivo</it>.</p

    Neuronal vulnerability and multilineage diversity in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing–remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions

    Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity.</p> <p>Methods</p> <p>We analysed microarray data of four regions - entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC) and middle temporal gyrus (MTG) from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions.</p> <p>Results and conclusion</p> <p>Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.</p

    Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish

    Get PDF
    During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds

    Bace1-dependent amyloid processing regulates hypothalamic leptin sensitivity in obese mice

    Get PDF
    Obesity places an enormous medical and economic burden on society. The principal driver appears to be central leptin resistance with hyperleptinemia. Accordingly, a compound that reverses or prevents leptin resistance should promote weight normalisation and improve glucose homeostasis. The protease Bace1 drives beta amyloid (Aβ) production with obesity elevating hypothalamic Bace1 activity and Aβ₁–₄₂ production. Pharmacological inhibition of Bace1 reduces body weight, improves glucose homeostasis and lowers plasma leptin in diet-induced obese (DIO) mice. These actions are not apparent in ob/ob or db/db mice, indicating the requirement for functional leptin signalling. Decreasing Bace1 activity normalises hypothalamic inflammation, lowers PTP1B and SOCS3 and restores hypothalamic leptin sensitivity and pSTAT3 response in obese mice, but does not affect leptin sensitivity in lean mice. Raising central Aβ₁–₄₂ levels in the early stage of DIO increases hypothalamic basal pSTAT3 and reduces the amplitude of the leptin pSTAT3 signal without increased inflammation. Thus, elevated Aβ₁–₄₂ promotes hypothalamic leptin resistance, which is associated with diminished whole-body sensitivity to exogenous leptin and exacerbated body weight gain in high fat fed mice. These results indicate that Bace1 inhibitors, currently in clinical trials for Alzheimer’s disease, may be useful agents for the treatment of obesity and associated diabetes

    A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules

    Full text link
    corecore