38 research outputs found

    Gene silencing in tick cell lines using small interfering or long double-stranded RNA

    Get PDF
    Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system

    Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tick-borne intracellular pathogen, <it>Anaplasma phagocytophilum </it>(Rickettsiales: Anaplasmataceae) causes human granulocytic anaplasmosis after infection of polymorphonuclear leucocytes. The human Sp110 gene is a member of the nuclear body (NB) components that functions as a nuclear hormone receptor transcriptional coactivator and plays an important role in immunoprotective mechanisms against pathogens in humans. In this research, we hypothesized that Sp110 may be involved in the infection of human promyelocytic HL-60 cells with <it>A. phagocytophilum</it>.</p> <p>Methods</p> <p>The human Sp110 and <it>A. phagocytophilum msp4 </it>mRNA levels were evaluated by real-time RT-PCR in infected human HL-60 cells sampled at 0, 12, 24, 48, 72 and 96 hours post-infection. The effect of Sp110 expression on <it>A. phagocytophilum </it>infection was determined by RNA interference (RNAi). The expression of Sp110 was silenced in HL-60 cells by RNAi using pre-designed siRNAs using the Nucleofector 96-well shuttle system (Amaxa Biosystems, Gaithersburg, MD, USA). The <it>A. phagocytophilum </it>infection levels were evaluated in HL-60 cells after RNAi by real-time PCR of <it>msp4 </it>and normalizing against human <it>Alu </it>sequences.</p> <p>Results</p> <p>While Sp110 mRNA levels increased concurrently with <it>A. phagocytophilum </it>infections in HL-60 cells, the silencing of Sp110 expression by RNA interference resulted in decreased infection levels.</p> <p>Conclusion</p> <p>These results demonstrated that Sp110 expression is required for <it>A. phagocytophilum </it>infection and multiplication in HL-60 cells, and suggest a previously undescribed mechanism by which <it>A. phagocytophilum </it>modulates Sp110 mRNA levels to facilitate establishment of infection of human HL-60 cells.</p

    Fibrinogen-related proteins in ixodid ticks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibrinogen-related proteins with lectin activity are believed to be part of the tick innate immune system. Several fibrinogen-related proteins have been described and characterised mainly on the basis of their cDNA sequences while direct biochemical evidence is missing. One of them, the haemolymph lectin Dorin M from the tick <it>Ornithodoros moubata </it>was isolated and characterised in more depth.</p> <p>Results</p> <p>Several fibrinogen-related proteins were detected in the haemolymph of ixodid ticks <it>Dermacentor marginatus</it>, <it>Rhipicephalus appendiculatus</it>, <it>R. pulchellus</it>, and <it>R. sanguineus</it>. These proteins were recognised by sera directed against the tick lectin Dorin M and the haemagglutination activity of the ticks <it>R. appendiculatus </it>and <it>D. marginatus</it>. Cross-reactivity of the identified proteins with antibodies against the fibrinogen domain of the human ficolin was also shown. The carbohydrate-binding ability of tick haemolymph was confirmed by haemagglutination activity assays, and this activity was shown to be inhibited by neuraminic acid and sialylated glycoproteins as well as by N-acetylated hexosamines. The fibrinogen-related proteins were shown to be glycosylated and they were localised in salivary glands, midguts, and haemocytes of <it>D. marginatus</it>. Hemelipoglycoprotein was also recognised by sera directed against the fibrinogen-related proteins in all three <it>Rhipicephalus </it>species as well as in <it>D. marginatus</it>. However, this protein does not contain the fibrinogen domain and thus, the binding possibly results from the structure similarity between hemelipoglycoprotein and the fibrinogen domain.</p> <p>Conclusions</p> <p>The presence of fibrinogen-related proteins was shown in the haemolymph of four tick species in high abundance. Reactivity of antibodies directed against ficolin or fibrinogen-related proteins with proteins which do not contain the fibrinogen domain points out the importance of sequence analysis of the identified proteins in further studies. Previously observed expression of fibrinogen-related proteins in haemocytes together with the results of this study suggest involvement of fibrinogen-related proteins in tick immunity processes. Thus, they have potential as targets for anti-tick vaccines and as antimicrobial proteins in pharmacology. Research on fibrinogen-related proteins could reveal further details of tick innate immunity processes.</p

    Epigenetic Silencing of Host Cell Defense Genes Enhances Intracellular Survival of the Rickettsial Pathogen Anaplasma phagocytophilum

    Get PDF
    Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum–infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1) expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease

    Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus

    Get PDF
    The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D. melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele, the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele, Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for ∼16% of the underlying phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene, Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession

    Zebrafish Whole-Adult-Organism Chemogenomics for Large-Scale Predictive and Discovery Chemical Biology

    Get PDF
    The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly), is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated) aromatic hydrocarbons [P(H)AHs] and estrogenic compounds (ECs), we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology

    TLR2 and Nod2 Mediate Resistance or Susceptibility to Fatal Intracellular Ehrlichia Infection in Murine Models of Ehrlichiosis

    Get PDF
    Our murine models of human monocytic ehrlichiosis (HME) have shown that severe and fatal ehrlichiosis is due to generation of pathogenic T cell responses causing immunopathology and multi-organ failure. However, the early events in the liver, the main site of infection, are not well understood. In this study, we examined the liver transcriptome during the course of lethal and nonlethal infections caused by Ixodes ovatus Ehrlichia and Ehrlichia muris, respectively. On day 3 post-infection (p.i.), although most host genes were down regulated in the two groups of infected mice compared to naïve counterparts, lethal infection induced significantly higher expression of caspase 1, caspase 4, nucleotide binding oligomerization domain-containing proteins (Nod1), tumor necrosis factor-alpha, interleukin 10, and CCL7 compared to nonlethal infection. On day 7 p.i., lethal infection induced highly significant upregulation of type-1 interferon, several inflammatory cytokines and chemokines, which was associated with increased expression levels of Toll-like receptor-2 (TLR2), Nod2, MyD88, nuclear factor-kappa B (NF-kB), Caspase 4, NLRP1, NLRP12, Pycard, and IL-1β, suggesting enhanced TLR signals and inflammasomes activation. We next evaluated the participation of TLR2 and Nod2 in the host response during lethal Ehrlichia infection. Although lack of TLR2 impaired bacterial elimination and increased tissue necrosis, Nod2 deficiency attenuated pathology and enhanced bacterial clearance, which correlated with increased interferon-γ and interleukin-10 levels and a decreased frequency of pathogenic CD8+ T cells in response to lethal infection. Thus, these data indicate that Nod2, but not TLR2, contributes to susceptibility to severe Ehrlichia-induced shock. Together, our studies provide, for the first time, insight into the diversity of host factors and novel molecular pathogenic mechanisms that may contribute to severe HME. © 2013 Chattoraj et al

    Use of Mutagenesis, Genetic Mapping and Next Generation Transcriptomics to Investigate Insecticide Resistance Mechanisms

    Get PDF
    Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w−]3R2) resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1) located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1) has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results
    corecore