99 research outputs found

    Consequences of perinatal treatment with l-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats

    Get PDF
    Treating spontaneously hypertensive rats (SHR) with l-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar–Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved

    Prenatal Stress and Balance of the Child's Cardiac Autonomic Nervous System at Age 5-6 Years

    Get PDF
    Objective: Autonomic nervous system (ANS) misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. Methods: Mothers from a prospective birth cohort (ABCD study) filled out a questionnaire at gestational week 16 [IQR 12– 20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80 th percentiles). Indicators of cardiac ANS in the offspring at age 5–6 years are: pre-ejection period (PEP), heart rate (HR), respiratory sinus arrhythmia (RSA) and cardiac autonomic balance (CAB), measured with electrocardiography and impedance cardiography in resting supine and sitting positions. Results: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p0.17).AccumulationofmaternalstresswasalsonotassociatedwithHR,PEP,RSAandCAB(p0.17). Accumulation of maternal stress was also not associated with HR, PEP, RSA and CAB (p0.07). Conclusion: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac AN

    A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice

    Get PDF
    Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection

    Determinants of participation in a longitudinal two-stage study of the health consequences of the Chornobyl nuclear power plant accident

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The determinants of participation in long-term follow-up studies of disasters have rarely been delineated. Even less is known from studies of events that occurred in eastern Europe. We examined the factors associated with participation in a longitudinal two-stage study conducted in Kyiv following the 1986 Chornobyl nuclear power plant accident.</p> <p>Methods</p> <p>Six hundred child-mother dyads (300 evacuees and 300 classmate controls) were initially assessed in 1997 when the children were 11 years old, and followed up in 2005–6 when they were 19 years old. A population control group (304 mothers and 327 children) was added in 2005–6. Each assessment point involved home interviews with the children and mothers (stage 1), followed by medical examinations of the children at a clinic (stage 2). Background characteristics, health status, and Chornobyl risk perceptions were examined.</p> <p>Results</p> <p>The participation rates in the follow-up home interviews were 87.8% for the children (88.6% for evacuees; 87.0% for classmates) and 83.7% for their mothers (86.4% for evacuees and 81.0% for classmates). Children's and mothers' participation was predicted by one another's study participation and attendance at the medical examination at time 1. Mother's participation was also predicted by initial concerns about her child's health, greater psychological distress, and Chornobyl risk perceptions. In 1997, 91.2% of the children had a medical examination (91.7% of evacuees and 90.7% of classmates); in 2005–6, 85.2% were examined (83.0% of evacuees, 87.7% of classmates, 85.0% of population controls). At both times, poor health perceptions were associated with receiving a medical examination. In 2005–6, clinic attendance was also associated with the young adults' risk perceptions, depression or generalized anxiety disorder, lower standard of living, and female gender.</p> <p>Conclusion</p> <p>Despite our low attrition rates, we identified several determinants of selective participation consistent with previous research. Although evacuee status was not associated with participation, Chornobyl risk perceptions were strong predictors of mothers' follow-up participation and attendance at the medical examinations. Understanding selective participation offers valuable insight for future longitudinal disaster studies that integrate psychiatric and medical epidemiologic research.</p

    Neutralization Serotyping of BK Polyomavirus Infection in Kidney Transplant Recipients

    Get PDF
    BK polyomavirus (BKV or BKPyV) associated nephropathy affects up to 10% of kidney transplant recipients (KTRs). BKV isolates are categorized into four genotypes. It is currently unclear whether the four genotypes are also serotypes. To address this issue, we developed high-throughput serological assays based on antibody-mediated neutralization of BKV genotype I and IV reporter vectors (pseudoviruses). Neutralization-based testing of sera from mice immunized with BKV-I or BKV-IV virus-like particles (VLPs) or sera from naturally infected human subjects revealed that BKV-I specific serum antibodies are poorly neutralizing against BKV-IV and vice versa. The fact that BKV-I and BKV-IV are distinct serotypes was less evident in traditional VLP-based ELISAs. BKV-I and BKV-IV neutralization assays were used to examine BKV type-specific neutralizing antibody responses in KTRs at various time points after transplantation. At study entry, sera from 5% and 49% of KTRs showed no detectable neutralizing activity for BKV-I or BKV-IV neutralization, respectively. By one year after transplantation, all KTRs were neutralization seropositive for BKV-I, and 43% of the initially BKV-IV seronegative subjects showed evidence of acute seroconversion for BKV-IV neutralization. The results suggest a model in which BKV-IV-specific seroconversion reflects a de novo BKV-IV infection in KTRs who initially lack protective antibody responses capable of neutralizing genotype IV BKVs. If this model is correct, it suggests that pre-vaccinating prospective KTRs with a multivalent VLP-based vaccine against all BKV serotypes, or administration of BKV-neutralizing antibodies, might offer protection against graft loss or dysfunction due to BKV associated nephropathy

    The Intensity of IUGR-Induced Transcriptome Deregulations Is Inversely Correlated with the Onset of Organ Function in a Rat Model

    Get PDF
    A low-protein diet applied during pregnancy in the rat results in intrauterine growth restricted (IUGR) fetuses. In humans, IUGR is associated with increased perinatal morbidity, higher incidence of neuro-developmental defects and increased risk of adult metabolic anomalies, such as diabetes and cardiovascular disease. Development and function of many organs are affected by environmental conditions such as those inducing fetal and early postnatal growth restriction. This phenomenon, termed “fetal programming” has been studied unconnectedly in some organs, but very few studies (if any) have investigated at the same time several organs, on a more comparative basis. However, it is quite probable that IUGR affects differentially most organ systems, with possible persistent changes in gene expression. In this study we address transcriptional alterations induced by IUGR in a multi-organ perspective, by systematic analysis of 20-days rat fetuses. We show that (1) expressional alterations are apparently stronger in organs functioning late in foetal or postnatal life than in organs that are functioning early (2) hierarchical classification of the deregulations put together kidney and placenta in one cluster, liver, lungs and heart in another; (3) the epigenetic machinery is set up especially in the placenta, while its alterations are rather mild in other organs; (4) the genes appear deregulated in chromosome clusters; (5) the altered expression cascades varies from organ to organ, with noticeably a very significant modification of the complement and coagulation cascades in the kidney; (6) we found a significant increase in TF binding site for HNF4 proteins specifically for liver genes that are down-regulated in IUGR, suggesting that this decrease is achieved through the action of HNF transcription factors, that are themselves transcriptionnally induced in the liver by IUGR (x 1.84 fold). Altogether, our study suggests that a combination of tissue-specific mechanisms contributes to bring about tissue-driven modifications of gene cascades. The question of these cascades being activated to adapt the organ to harsh environmental condition, or as an endpoint consequence is still raised

    Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish

    Get PDF
    <div><h3>Background</h3><p>Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the <em>Akt1</em> gene.</p> <h3>Methodology/Principal Findings</h3><p><em>Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1</em>)<sup>cy18</sup> displays severely obese phenotypes at the adult stage. In Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup> caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues.</p> <h3>Conclusion/Significance</h3><p>Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.</p> </div

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage
    corecore