160,817 research outputs found

    Long-term Variability Properties and Periodicity Analysis for Blazars

    Get PDF
    In this paper, the compiled long-term optical and infrared measurements of some blazars are used to analyze the variation properties and the optical data are used to search for periodicity evidence in the lightcurve by means of the Jurkevich technique and the discrete correlation function (DCF) method. Following periods are found: 4.52-year for 3C 66A; 1.56 and 2.95 years for AO 0235+164; 14.4, 18.6 years for PKS 0735+178; 17.85 and 24.7 years for PKS 0754+100; 5.53 and 11.75 for OJ 287. 4.45, and 6.89 years for PKS 1215; 9 and 14.84 years for PKS 1219+285; 2.0, 13.5 and 22.5 for 3C273; 7.1 year for 3C279; 6.07 for PKS 1308+326; 3.0 and 16.5 years for PKS 1418+546; 2.0 and 9.35 years for PKS 1514-241; 18.18 for PKS 1807+698; 4.16 and 7.0 for 2155-304; 14 and 20 years for BL Lacertae. Some explanations have been discussed.Comment: 10 pages, 2 table, no figure, a proceeding paper for Pacific Rim Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin

    Applying ACO To Large Scale TSP Instances

    Full text link
    Ant Colony Optimisation (ACO) is a well known metaheuristic that has proven successful at solving Travelling Salesman Problems (TSP). However, ACO suffers from two issues; the first is that the technique has significant memory requirements for storing pheromone levels on edges between cities and second, the iterative probabilistic nature of choosing which city to visit next at every step is computationally expensive. This restricts ACO from solving larger TSP instances. This paper will present a methodology for deploying ACO on larger TSP instances by removing the high memory requirements, exploiting parallel CPU hardware and introducing a significant efficiency saving measure. The approach results in greater accuracy and speed. This enables the proposed ACO approach to tackle TSP instances of up to 200K cities within reasonable timescales using a single CPU. Speedups of as much as 1200 fold are achieved by the technique

    Dilatation of Lateral Ventricles with Brain Volumes in Infants with 3D Transfontanelle US

    Full text link
    Ultrasound (US) can be used to assess brain development in newborns, as MRI is challenging due to immobilization issues, and may require sedation. Dilatation of the lateral ventricles in the brain is a risk factor for poorer neurodevelopment outcomes in infants. Hence, 3D US has the ability to assess the volume of the lateral ventricles similar to clinically standard MRI, but manual segmentation is time consuming. The objective of this study is to develop an approach quantifying the ratio of lateral ventricular dilatation with respect to total brain volume using 3D US, which can assess the severity of macrocephaly. Automatic segmentation of the lateral ventricles is achieved with a multi-atlas deformable registration approach using locally linear correlation metrics for US-MRI fusion, followed by a refinement step using deformable mesh models. Total brain volume is estimated using a 3D ellipsoid modeling approach. Validation was performed on a cohort of 12 infants, ranging from 2 to 8.5 months old, where 3D US and MRI were used to compare brain volumes and segmented lateral ventricles. Automatically extracted volumes from 3D US show a high correlation and no statistically significant difference when compared to ground truth measurements. Differences in volume ratios was 6.0 +/- 4.8% compared to MRI, while lateral ventricular segmentation yielded a mean Dice coefficient of 70.8 +/- 3.6% and a mean absolute distance (MAD) of 0.88 +/- 0.2mm, demonstrating the clinical benefit of this tool in paediatric ultrasound

    Germination of primed seed under NaCl stress in wheat.

    Get PDF
    Copyright © 2012 Michael P. Fuller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Soil salinity affects a large and increasing amount of arable land worldwide, and genetic and agronomic solutions to increasing salt tolerance are urgently needed. Experiments were conducted to improve wheat seed performance under salinity stress conditions after priming. An experiment was conducted using a completely randomized design of four replications for germination indices in wheat (Triticum aestivum L. cv. Caxton). Normal and primed seed with PEG6000 at −1MPa and five concentrations of NaCl (0, 50, 100, 150, and 200mM) were tested. Results indicate that priming seed significantly (P < 0.05) increased germination percentage at first count and final count, coefficient of velocity of germination, germination rate index, and mean germination time, while increasing of NaCl concentration significantly reduced it. Priming seed improved germination attributes at all NaCl concentration levels. The priming appeared to be able to overcome the effect of salt stress at 50 to 100mMand reduce the effect of NaCl at higher concentrations up to 200 mM. The primed seed gave both faster germination and led to higher germination when under salt stress. We conclude that using priming techniques can effectively enhance the germination seed under saline condition

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues

    Truncated Variational Sampling for "Black Box" Optimization of Generative Models

    Get PDF
    We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, and investigate the "black box" applicability of the resulting optimization procedure. For general purpose applicability, samples are drawn from approximate marginal distributions of the considered generative model as well as from the model's prior distribution. As such, variational sampling is defined in a generic form, and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which are models with binary observables). Numerical experiments verify that the investigated approach efficiently as well as effectively increases a variational free energy objective without requiring any additional analytical steps
    corecore