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Abstract

We investigate the optimization of two probabilistic generative models with binary latent variables using a novel
variational EM approach. The approach distinguishes itself from previous variational approaches by using latent
states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the
latent states, and investigate the ‘black box’ applicability of the resulting optimization procedure. For general
purpose applicability, samples are drawn from approximate marginal distributions of the considered generative
model as well as from the model’s prior distribution. As such, variational sampling is defined in a generic form,
and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to
Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which
are models with binary observables). Numerical experiments verify that the investigated approach efficiently as
well as effectively increases a variational free energy objective without requiring any additional analytical steps.

1 Introduction

The use of expectation maximization (EM) for advanced probabilistic data models requires approximations be-
cause EM with an exact E-step (computing the full posterior) is typically intractable. Many models of recent
interest have binary latents [1, 2, 3, 4], and for such models these intractabilities are primarily computational:
exact E-steps can be computed but they scale exponentially with the number of latents. To overcome intractabil-
ities, overcome intractabilities for models with binary latents there are typically two types of approaches applied:
sampling approaches or variational EM with the latter having been dominated by factored variational approaches
in the past [e.g. 5]. Variational approaches and sampling have also often been combined [6, 7, 8, 4] to leverage the
advantages of both methods. However, given a generative model, both approximations require often cumbersome
derivations either to derive efficient posterior samplers or to derive update equations for variational parameter
optimization. The question how procedures can be defined that automatize the development of learning algo-
rithms for generative models has therefore shifted into the focus of recent research [9, 10, 11, 12, 4]. In this paper,
we make use of truncated approximations to EM which have repeatedly been applied before [13, 4, 14]. Here we
show how novel theoretical results on truncated variational distributions [15] can be used to couple variational
EM and sampling exceptionally tightly. This coupling then enables “black box” applicability.

2 Truncated Posteriors and Sampling

Let us consider generative models with H binary latent variables, ~s = (s1, . . . , sH) with sh ∈ {0, 1}. Truncated
approximations have been motivated by the observation that the exponentially large sums over states required
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for expectation values w.r.t. posteriors are typically dominated by summands corresponding to very few states. If

for a given data point ~y (n) these few states are contained in a set K(n)

, we can define a posterior approximation
as follows [compare 13, 4]:

q(n)(~s;K,Θ) =

p(~s | ~y (n),Θ) δ(~s ∈ K
(n)

)∑
~s ′∈K(n)

p(~s ′ | ~y (n),Θ)
, (1)

where δ(~s ∈ K(n)

) = 1 if K(n)

contains ~s and zero otherwise. It is straight-forward to derive expectation
values w.r.t. these approximate posteriors simply by inserting (1) into the definition of expectation values and
by multiplying numerator and denominator by p(~y (n) |Θ), which yields:

〈g(~s)〉q(n) =

∑
~s∈K(n)

p(~s, ~y (n) |Θ) g(~s)

∑
~s ′∈K(n)

p(~s ′, ~y (n) |Θ)
(2)

where g(~s) is a function of the hidden variables. As the dominating summands are different for each data point

~y (n), the sets K(n)

are different. If a set K(n)

now contains those states ~s which dominate the sums over the
joints w.r.t. the exact posterior, then Eqn. 2 is a very accurate approximation.

Truncated posterior approximations have successfully been applied to a number of elementary and more ad-
vanced generative models, and they do not suffer from potential biases introduced by posterior independence

assumptions made by factored variational approximations Previously, the sets K(n)

were defined based on sparsity

assumptions and/or latent preselection [13, 16]. The approach followed here, in contrast, uses sets K(n)

which
contain samples from model and data dependent distributions. By treating the truncated distribution (1) as
variational distributions within a free-energy framework [15], we can then derive efficient procedures to update

the samples in K(n)

such that the variational free-energy is always monotonically increased. For this we use the
following theoretical results: (1) We use that the M-step equations remain unchanged if instead of exact poste-
riors the truncated posteriors (1) are used; (2) We make use of the result that after each M-step the free-energy
corresponding to truncated variational distributions is given by the following simplified and computationally
tractable form:

F(K,Θ) =
∑
n

log
( ∑
~s∈K(n)

p(~s, ~y (n) |Θ)
)
, (3)

where K = (K(1), . . . ,K(N)). The variational E-step then consists of finding a set Knew which increases F(K,Θ)
w.r.t. K. The M-step consist of the standard M-step equations but with expectation values estimated by (2).

For any larger scale multiple-cause model we can not exhaustively iterate through all latent states. We therefore
here seek to find new sets K̃ using sampling, such that the free-energy is increased, F(K̃,Θ) > F(K,Θ). To keep
the computational demand limited, we will take the sets K and K̃ to be of constant size after each E-step by

demanding |K(n) | = |K̃(n)| = S for all n. Instead of explicitly computing and comparing the free-energies (3)
w.r.t.K and K̃, we can instead use a comparison of joint probabilities p(~s, ~y (n) |Θ) as a criterion for free-energy
increase. The following can be shown [15]:

For a replacement of ~s ∈ K(n)

by a new state ~snew 6∈ K
(n)

the free-energy F(K,Θ) is increased if and only if

p(~snew, ~y
(n) |Θ) > p(~s, ~y (n) |Θ) . (4)

Criterion (4) may directly be concluded by considering the functional form of Eqn. 3 [see 15, for a formal proof].

It means that the free-energy is guaranteed to increase if we replace, e.g., the state with the lowest joint in K(n)

by a newly sampled state ~snew 6∈ K
(n)

with a higher joint. Instead of comparing single joints, a computationally
more efficient procedure is to use batches of many newly sampled states, and then to use criterion (4) to increase
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Algorithm 1: Sampling-based TV-E-step

for n = 1, . . . , N do

draw M samples ~s ∼ p
(n)
var(~s);

define K(n)

new to contain all M samples;

set K(n)

= K(n) ∪ K(n)

new;

remove those (|K(n) | − S) samples ~s ∈ K(n)

with the lowest
p(~s, ~y (n) |Θ);

F(K,Θ) as much as possible. Such
a procedure is given by Alg. 1: For
each data point n, we first draw M
new samples from a yet to be spec-

ified distribution p
(n)
var(~s). These

samples are then united with the

states already in K(n)

. Of this
union of old and new states, we
then take the S states with high-
est joints to define the new state

set K(n)

. This last step selects because of (4) the best possible subset of the union. Furthermore, selecting the
S states with largest joints represents a standard unsorted partial sorting problem which is solvable in linear
time complexity, i.e., with at most O(M + S) in our case. Instead of selecting the S largest joints, we can also

remove the (|K(n) | − S) lowest ones (last line in Alg. 1). For any distribution p
(n)
var(~s), Alg. 1 is guaranteed to

monotonously increase the free-energy F(K,Θ) w.r.t. K.

3 Posterior, Prior, and Marginal Sampling

While the partial E-step of Alg. 1 monotonously increases the free-energy for any distribution p
(n)
var(~s) used

for sampling, the specific choice for p
(n)
var(~s) is of central importance for the efficiency of the procedure. If the

distribution is not chosen well, any significant increase of F(K,Θ) may require unreasonable amounts of time, e.g.,
because new samples which increase F(K,Θ) are sampled too infrequently. By considering Alg. 1, the requirement

for p
(n)
var(Θ) is to provide samples with high joint probability p(~s, ~y (n) |Θ) for a given ~y (n). The first distribution

that comes to mind for p
(n)
var(Θ) is the posterior distribution p(~s | ~y (n),Θ). Samples form the posterior are likely

to have high posterior mass and therefore high joint mass relative to the other states because all states share the
same normalizer p(~y (n) |Θ). On the downside, however, sampling from the posterior may not be an easy task for
models with binary latents and a relatively high dimensionality as we intend to aim at here. Furthermore, the
derivation of posterior samplers requires additional analytical efforts for any new generative model we apply the
procedure to, and requires potentially additional design choices such as definitions of proposal distributions. All
these points are contrary to our goal of a ‘black box’ procedure which is applicable as generally and generically as

possible. Instead, we therefore seek distributions p
(n)
var(Θ) for Alg. 1 that can efficiently optimize the free-energy

but that can be defined without requiring model-specific analytical derivations. Candidates for p
(n)
var(Θ) are

consequently the prior distribution of the given generative model, p(~s |Θ), or the marginal distribution. A prior
sampler is usually directly given by the generative model but may have the disadvantage that finally new samples
only very rarely increase the free-energy because the prior sampler is independent of a given data point (only the
average over data points has high posterior mass). Marginal samplers, on the other hand, are data driven but
the computation of activation probabilities p(sh = 1 | ~y (n),Θ) is unfortunately not computationally efficient. To
obtain data-driven but efficient samplers, we will for our purposes, therefore, use approximate marginal samplers.

1st Approximation. First observe that we can obtain an efficiently computable approximation to a marginal
sampler by using the truncated distributions q(n)(~s) in (1) themselves. For binary latents sh we can approximate:

p(sh = 1 | ~y (n),Θ) = 〈sh〉p(~s | ~y (n),Θ) ≈ 〈sh〉q(n)(~s) , (5)

and accordingly p(sh = 0 | ~y (n),Θ). Because of the arguments given above the expectations (2) w.r.t. q(n)(~s)
are efficiently computable using (2) with g(~s) = ~s. Using 5 we can consequently define for each latent h
an approximation of the marginal p(sh = 1 | ~y (n),Θ). Given a directed generative model, no derivations are
required to efficiently generate samples from this approximation because the joint probabilities to estimate
p(sh = 1 | ~y (n),Θ) using (2) can directly be computed. The truncated marginal sampler defined by Eqn. 5
becomes increasingly similar to an exact marginal sampler the better the truncated distributions approximate
the exact posteriors.

2nd Approximation. To further improve efficiency and convergence times, we optionally apply a second
approximation by using the approximate marginal distributions (Eqns. 5) as target objective for a parametric
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function fh(~y (n); Λ) which approximates the truncated marginal. A parametric function from data to marginal
probabilities of the latents has the advantage of modeling data similarities by mapping similar data to similar
marginal distributions. The mapping incorporates information across the data points, which can facilitate

training and, e.g., avoids more expensive K(n)

updates of some data points due to bad initialization. The mapping
fh(~y (n); Λ) is estimated with the training data and the current approximate marginal qmar(sh = 1 | ~y,Θ) defined
by (5) with (2). For simplicity, we use a Multi-Layer Perceptron (MLP) for the function mapping and trained
with cross-entropy. We use a generic MLP with one hidden layer. As such, the MLP itself is independent of
the generative model considered but optimized for the generic truncated approximation (5) which contains the
model’s joint. The idea of using a parametric function to approximate expectations w.r.t. intractable posteriors
is an often applied technique [e.g. 17, 18, and refs therein].

Algorithm 2: Truncated Variational Sampling.

initialize model parameters Θ;

for all n init K(n)

such that |K(n) | = S;
set Mp; (# samples from prior distribution)
set Mq; (# samples from marginal distr.)
repeat

update Mp and Mq (sampler adjustment)
for (n = 1, . . . , N) do

draw Mp samples from p(~s |Θ)→ K(n)

p ;

draw Mq samples from q
(n)
mar(~s; Θ)→ K(n)

q ,

K(n)

= K(n) ∪ K(n)

p ∪ K(n)

q ;

remove those (|K(n) | − S) elements

~s ∈ K(n)

with lowest p(~s, ~y (n) |Θ);

K = (K(1), . . . ,K(N));

use M-steps with (2) to change Θ;

until Θ has sufficiently converged ;

For our numerical experiments we com-
bine prior and (approximate) marginal
sampling to suggest new variational
states. The easy to use prior samplers
are not data driven and represent rather
an exploration strategy. Marginal sam-
pling, on the other hand, is rather an
exploitation strategy that produces good
results when sufficiently much from the
data is already known. Mixing the two
has therefore turned out best for our pur-
poses. Posterior samplers do require ad-
ditional derivations but, to our experi-
ence so far, are also not necessarily better
than combined prior and marginal sam-
pling in optimizing the truncated free-
energy.

Before we consider concrete generative
models, let us summarize the general
novel procedure in the form of the pseudo
code given by Alg. 2. First, we have to

initialize the model parameters Θ and the sets K(n)

. While initializing Θ can be done as for other EM ap-

proaches, one option for an initialization of K(n)

would be the use of samples from the prior given Θ (more
details are given below). The inner loop (the variational E-step) of Alg. 2 is then based on a mix of prior and
marginal samplers, and each of these samplers is directly defined in terms of a considered generative model, no
model-specific derivations are used. The same does not apply for the M-step but we will consider two examples
how this point can be addressed: (A) either by using well-known standard M-step or (B) by applying automatic
differentiation. Alg. 2 will be referred to as truncated variational sampling (TVS).

4 Applications of TVS

Exemplarily, we consider two genrative models: Binary Sparse Coding and Sigmoid Belief Networks. The models
are complementary in many aspects, and thus serve well as example appications.

Binary Sparse Coding. In the first example we will consider dictionary learning – a typical application
domain of variational EM approaches and sampling approaches in general. Probabilistic sparse coding models
are not computationally tractable and common approximations such as maximum a-posteriori approximations
can result in suboptimal solutions. Factored variational EM as well as sampling approaches have therefore been
routinely applied to sparse coding. Of particular interest for our purposes are sparse coding models with discrete
or semi-discrete latents [e.g. 19, 20, 1, 4], where binary sparse coding [BSC; 19, 20] represents an elementary
example.

BSC assumes independent and identically distributed (iid) binary latent variables following a Bernoulli prior
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distribution, and it uses a Gaussian noise model:

p(~s |Θ) =

H∏
h=1

πsh (1− π)1−sh , p(~y |~s,Θ) = N (~y;W~s, σ21) , (6)

where π ∈ [0, 1] and where Θ = (π,W, σ2) is the set of model parameters.

As TVS is an approximate EM approach, let us first consider exact EM which seeks parameters Θ that optimize
the data likelihood for the BSC data model (6). Parameter update equations are canonically derived and given
by [e.g. 20]:

π =
1

N

N∑
n=1

H∑
h=1

〈sh〉qn , W =
( N∑

n=1

~y(n)〈~s〉Tqn
)( N∑

n=1

〈~s~sT 〉qn
)−1

(7)

σ2 =
1

ND

N∑
n=1

〈‖~y (n) −W~s‖2〉qn (8)

where the qn are equal to the exact posteriors for exact EM, qn = p(~s | ~y (n),Θ).

A standard variational EM approach for BSC would now replace these posteriors by variational distributions qn.
Applications of (mean-field) variational distributions as, e.g., applied by [19], entails (A) a choice which family
of distributions to use; and (B) additional derivations in order to derive update equations for the introduced
variational parameters. Also the derivation of sampling based approaches would require derivations. The same
is not the case for the application of TVS (Alg. 2). In order to obtain a TVS learning algorithm for BSC, we do
(for the update equations) just have to replace the expectation values in Eqns. 7 to 8 by (2). For the E-step, we

then use the generative model description (Eqns. 6) in order to update the sets K(n)

using prior and approximate
marginal distributions as described by Alg. 2.
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Dictionary Elements

A.

B.

C.

C. D. E.

Figure 1: Linear Bars
Test. A. A sub-
set of the generated
datapoints. B. The
evolution of the dictio-
nary over TVS itera-
tions. Note that permu-
tations of the dictionary
elements would yield the
same likelihood. C. The
ground truth dictionary.
C. The evolution of free-
energy over TVS iter-
ations plotted next to
the exact log-likelihood.
D. The evolution of the
model standard devia-
tion plotted next to the
ground truth. E. The
evolution of the expected
number of active units
πH plotted against the
ground truth.

Artificial Data. Firstly, we verify and study the novel approach using artificial data generated by the BSC data
model using ground-truth generating parameters Θgt. We use H = 10 latent variables, sh, sampled independently
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Figure 2: Image
Patches. A. The
dictionary at con-
vergence. B. The
evolution of the
free-energy over
TVS iterations. C.
The evolution of
the model standard
deviation over TVS
iterations. E. Evolu-
tion of the expected
number of active
units πH over TVS
iterations. Please
enlarge for better
visibility.

by a Bernoulli distribution parameterized by πgt = 0.2. We set the ground truth parameters for the dictionary
matrix, W ∈ RD×H to appear like vertical and horizontal bars [compare 20] when rasterized to 5× 5 images, see
Figure 1, with a value of 10 for a pixel that belongs to the bar and 0 for a pixel that belongs to the background. We
linearly combine the latent variables with the dictionary elements to generate a D = 25-dimensional datapoint, ~y
to which we add mean-free Gaussian noise with standard deviation σgt = 2.0. In this way we generate N = 10 000
datapoints that form our artificial dataset.

We now use TVS for BSC to fit another instance of the BSC model to the generated data. The model is initialized
with a noise parameter σ equal to the average standard deviation of each observation in the data ~y(n), the prior
parameter is initialized as π = 1/H were the latent variable H = 10 is maintained from the generating model.
We initialize the columns of the dictionary matrix with the mean datapoint plus mean Gaussian samples with a
standard deviation σ/4.

We train the model using the TVS algorithm for 200 TV-EM iterations maintaining the number of variational

states at |K(n) | = S = 64 for all datapoints throughout the duration of the training. We use Mq = 32 samples
drawn from the marginal distribution (only 1st approximation) and Mp = 32 samples drawn from the prior to
vary K according to Alg. 2. The evolution of the parameters during training is presented in Figure 1. We were
able to extract very precise estimates of the ground truth parameters of the dataset. Convergence is faster for
the dictionary elements W while we finally also achieve very good estimates for the noise scale σ and prior π.
We also appear to achieve a very close approximation of the exact log-likelihood using the truncated free-energy
(Fig. 1), which shows that our free-energy bound is very tight for this data.

Image Patches. For training, we now use N = 100 000 patches of size D = 16 × 16 from a subset of the Van
Hateren image dataset [21] that excludes images containing artificial structures. We used the same preprocessing
as in [22]. We trained BSC with TVS for 2000 EM iterations and used a sampler adjustment (see Alg. 2): the
first 100 iterations used Mp = 200 samples from the prior and Mq = 0 samples from the marginal distribution
(only 1st approximation); from iteration 100 to iteration 200 we then linearly decreased the number of prior
samples to Mp = 0 and increased the number of marginal samples to Mq = 200 (at all times Mp + Mq = 200).
Fig. 2 shows the basis functions W to converge to represent, e.g., Gabor functions [compare 20].

Sigmoid Belief Networks. The second example we will consider here is a typical representative of a Bayesian
Network: Sigmoid Believe Networks [SBNs; 23]. While sparse coding approaches are applied to continuous
(Gaussian distributed) observed variables, SBNs have binary observed and hidden variables. A further difference
is that SBNs require gradients for parameter updates (partial M-steps), while parameter updates of sparse coding
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models including BSC have well-known updates that fully maximize a corresponding free-energy (full M-steps).
SBNs thus serve as an example complementary to BSC, and is well suited for our purposes of studying generality
and effectiveness of TVS.

For simplicity, we will here consider an SBN with the same graphical model architecture as BSC: one observed
and one hidden layer. The SBN generative model is then given by:

p(sh) =
∏
h

πsh
h (1− πh)(1−sh), p(~y|~s) =

∏
d

gyd

d (1− gd)(1−yd) (9)

where πh parameterizes the prior distribution and where gd = σ(
∑

hWdhsh + bd) is a post-linear non-linearity
with Sigmoid function σ.

In general, inference for SBNs is challenging because of potentially show complex dependencies among its vari-
ables. Because of this, direct applications of standard variational approaches [e.g. 23] are challenging, and also
popular recent variational methods applying reparameterization [24, 25] are not directly applicable. Also (vari-
ational) sampling approaches require additional mechanisms, e.g., the score function based approach needs to
reduce the variance of estimation [3].

Figure 3: Application of a shallow
SBN with TVS to artificial data
(bars test). A Ten examples of
the training data points. B Vi-
sualization of the learned weight
matrix W of the shallow SBN. All
bars are discovered, one for each
hidden unit. C Learning curve of
the free energy. The dashed green
line shows the true log likelihood
of the SBN with the parameters
used for generating the training
data. Enlarge for better visibility.

Artificial Data. As for BSC, the optimization of SBNs by applying Alg. 2 does not require additional deriva-
tions. We again first use a bars test as for BSC but the linearly superimposed bars now go through the sigmoid
function and produce binary representations, i.e., generation according to (9). We optimized an SBN with

H = 10 hidden units on N = 2000 data points of such a bars test. For Alg. 2 we used |K(n) | = S = 50 and very
few samples for variation were found sufficient (Mq = Mp = 5). Results are shown in Fig. 3. The free energy (3)
converges to even somewhat higher values than the (here still computable) ground-truth likelihood because of
the limited size of training data.

Binarized MNIST. Fianlly we apply SBNs to the Binarized MNIST dataset (downloaded from [28], converted

as in [29]). We used Alg. 2 with |K(n) | = S = 50, Mp = 10, Mq = 20 (no sampler adjustment) and truncated
marginal distributions approximated using an MLP with one hidden layer of 500 hidden units and tanh activation
(2nd Approximation). Tab. 1 compares SBNs optimized by TVS with other models and optimization approaches.

5 Conclusion

The TVS approach studied here is different from previous approaches [9, 10, 11, 6, 12] as it does not rely
on a parametric form of a variational distribution which is then, e.g., sampled from to estimate parameter
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approx.
model H log-LL

SBN (TVS) 100 -121.91
SBN (TVS) 200 -111.23

SBN (Gibbs)∗ 200 -94.3
SBN (VB)∗ 200 -117.0

SBN (NVIL)� 200 -113.1
SBN (WS)† 200 -120.7

SBN (RWS)† 200 -103.1
SBN (AIR)‡ 200 -100.9

Table 1: Comparison of different models with two layers and different
numbers of latents H on binarized MNIST. (∗) taken from [2], (�)
from [3], (†) from [26], (‡) from [27]. For TVS the final free energy on
the test set can directly be computed by iterating the TV-E-step. The
right column reports these values as the estimated test log-likelihood
(log-LL). Hence, for TVS the log-LL values are a lower bound estima-
tion while results by [26, 27] are from Monte Carlo estimations (and
not necessarily lower bounds). For SBNs with 200 hidden units, we
observed that TVS slightly outperforms NVIL, and its performance is
comparable to RWS. The results of [2] can not directly serveas a com-
parison of variational approaches (additional knowledge in the form
of sparse priors were used).

updates. In contrast, for TVS, the drawn samples themselves define the variational distribution and act as
its variational parameters. Changing the used samples changes the variational distribution. TVS is thus by
definition directly coupling sampling and variational EM which in conjunction with its ‘black box’ applicability
is the main contribution of this study. One benefit of the tight coupling seems to be that none of the diverse
variance reduction techniques (which were central to BBVI or NVIL) are required. TVS can thus be considered
as the most directly applicable ‘black box’ approach. We have here shown a proof of concept. More advanced
models and further algorithmic improvments will be the subject of future studies.

References

[1] Goodfellow, I., Courville, A.C., Bengio, Y.: Large-scale feature learning with spike-and-slab sparse coding.
In: ICML. (2012)

[2] Gan, Z., Henao, R., Carlson, D., Carin, L.: Learning Deep Sigmoid Belief Networks with Data Augmenta-
tion. In: AISTATS. (2015)

[3] Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks. In: ICML. (2014)
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