37 research outputs found
Recommended from our members
Precision farming and archaeology
With a significant growth in the agricultural technology industry a vast amount of agricultural data is now being collected on farms throughout the world. Farmers aim to utilise these technologies to regularly record and manage the variation of crops and soils within their fields, to reduce inputs, increase yields and enhance environmental sustainability. In this paper we aim to highlight the variety of different data types and methodological processes involved in modern precision farming and explore how potentially interconnected these systems are with the archaeological communit
Multifunctionality of silver closo-boranes
Silver compounds share a rich history in technical applications including photography, catalysis, photocatalysis, cloud seeding and as antimicrobial agents. Here we present a class of silver compounds (Ag2B10H10 and Ag2B12H12) that are semiconductors with a bandgap at 2.3?eV in the green visible light spectrum. The silver boranes have extremely high ion conductivity and dynamic-anion facilitated Ag(+) migration is suggested based on the structural model. The ion conductivity is enhanced more than two orders of magnitude at room temperature (up to 3.2?mS?cm(-1)) by substitution with AgI to form new compounds. Furthermore, the closo-boranes show extremely fast silver nano-filament growth when excited by electrons during transmission electron microscope investigations. Ag nano-filaments can also be reabsorbed back into Ag2B12H12. These interesting properties demonstrate the multifunctionality of silver closo-boranes and open up avenues in a wide range of fields including photocatalysis, solid state ionics and nano-wire production
Between-day reliability of electromechanical delay of selected neck muscles during performance of maximal isometric efforts
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to assess the between-day reliability of the electromechanical delay (EMD) of selected neck muscles during the performance of maximal isometric contractions in five different directions.</p> <p>Methods</p> <p>Twenty-one physically active males participated in two testing sessions separated by seven to eight days. Using a custom-made fixed frame dynamometer, cervical force and surface electromyography (EMG) were recorded bilaterally from the splenius capitis, upper trapezius and sternocleidomastoid muscles during the performance of efforts in extension, flexion, left and right lateral bending, and protraction. The EMD was extracted using the Teager-Kaiser Energy Operator. Reliability indices calculated for each muscle in each testing direction were: the difference in scores between the two testing sessions and corresponding 95% confidence intervals, the standard error of measurement (SEM) and intra-class correlation coefficients (ICC).</p> <p>Results</p> <p>EMD values showed no evidence of systematic difference between the two testing sessions across all muscles and testing directions. The SEM for extension, flexion and lateral bending efforts ranged between 2.5 ms to 4.8 ms, indicating a good level of measurement precision. For protraction, SEM values were higher and considered to be imprecise for research and clinical purposes. ICC values for all muscles across all testing directions ranged from 0.23 to 0.79.</p> <p>Conclusion</p> <p>EMD of selected neck muscles can be measured with sufficient precision for the assessment of neck muscle function in an athletic population in the majority of directions tested.</p
Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in <i>Caenorhabditis elegans</i>
<div><p>The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. <i>C</i>. <i>elegans</i> oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for <i>C</i>. <i>elegans</i>. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.</p></div
Pheromone-sensing neurons regulate peripheral lipid metabolism in <i>Caenorhabditis elegans</i>
It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels
Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol
Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20–24 months) as compared to the young animals (1–3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease
Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum
Nanocrystals are under active investigation because of their interesting size- dependent properties(1,2) and potential applications(3-5). Silicon nanocrystals have been studied for possible uses in optoelectronics(6), and may be relevant to the understanding of natural processes such as lightning strikes(7). Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au-8,(9) and CdSe clusters(10). However, it is difficult to study nanocrystals by such methods unless they are synthesized in the gas phase(11). In particular, pre-prepared nanocrystals are generally difficult to sublime without decomposition. Here we report the observation that films of alkyl-capped silicon nanocrystals evaporate upon heating in ultrahigh vacuum at 200 degrees C, and the vapour of intact nanocrystals can be collected on a variety of solid substrates. This effect may be useful for the controlled preparation of new quantum-confined silicon structures and could facilitate their mass spectroscopic study and size- selection(12)