25 research outputs found

    A Bipolar Clamp Mechanism for Activation of Jak-Family Protein Tyrosine Kinases

    Get PDF
    Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak) family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2) domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH) receptor/Jak2/SH2-Bβ system. The modeling results suggest that, whereas Jak2-(SH2-Bβ)2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bβ and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar ‘clamp’ that stabilizes the active configuration of two Jak2 molecules in the same macro-complex

    Effects of dietary phytoestrogens on plasma testosterone and triiodothyronine (T3) levels in male goat kids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to xenoestrogens in humans and animals has gained increasing attention due to the effects of these compounds on reproduction. The present study was undertaken to investigate the influence of low-dose dietary phytoestrogen exposure, i.e. a mixture of genistein, daidzein, biochanin A and formononetin, on the establishment of testosterone production during puberty in male goat kids.</p> <p>Methods</p> <p>Goat kids at the age of 3 months received either a standard diet or a diet supplemented with phytoestrogens (3 - 4 mg/kg/day) for ~3 months. Plasma testosterone and total and free triiodothyronine (T<sub>3</sub>) concentrations were determined weekly. Testicular levels of testosterone and cAMP were measured at the end of the experiment. Repeated measurement analysis of variance using the MIXED procedure on the generated averages, according to the Statistical Analysis System program package (Release 6.12, 1996, SAS Institute Inc., Cary, NC, USA) was carried out.</p> <p>Results</p> <p>No significant difference in plasma testosterone concentration between the groups was detected during the first 7 weeks. However, at the age of 5 months (i.e. October 1, week 8) phytoestrogen-treated animals showed significantly higher testosterone concentrations than control animals (37.5 nmol/l vs 19.1 nmol/l). This elevation was preceded by a rise in plasma total T<sub>3 </sub>that occurred on September 17 (week 6). A slightly higher concentration of free T<sub>3 </sub>was detected in the phytoestrogen group at the same time point, but it was not until October 8 and 15 (week 9 and 10) that a significant difference was found between the groups. At the termination of the experiment, testicular cAMP levels were significantly lower in goats fed a phytoestrogen-supplemented diet. Phytoestrogen-fed animals also had lower plasma and testicular testosterone concentrations, but these differences were not statistically significant.</p> <p>Conclusion</p> <p>Our findings suggest that phytoestrogens can stimulate testosterone synthesis during puberty in male goats by increasing the secretion of T<sub>3</sub>; a hormone known to stimulate Leydig cell steroidogenesis. It is possible that feedback signalling underlies the tendency towards decreased steroid production at the end of the experiment.</p

    The Janus kinases (Jaks)

    Get PDF
    The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs

    Analysis of jak2 catalytic function by peptide microarrays: The role of the JH2 domain and V617F mutation

    Get PDF
    Janus kinase 2 (JAK2) initiates signaling from several cytokine receptors and is required for biological responses such as erythropoiesis. JAK2 activity is controlled by regulatory proteins such as Suppressor of Cytokine Signaling (SOCS) proteins and protein tyrosine phosphatases. JAK2 activity is also intrinsically controlled by regulatory domains, where the pseudokinase (JAK homology 2, JH2) domain has been shown to play an essential role. The physiological role of the JH2 domain in the regulation of JAK2 activity was highlighted by the discovery of the acquired missense point mutation V617F in myeloproliferative neoplasms (MPN). Hence, determining the precise role of this domain is critical for understanding disease pathogenesis and design of new treatment modalities. Here, we have evaluated the effect of inter-domain interactions in kinase activity and substrate specificity. By using for the first time purified recombinant JAK2 proteins and a novel peptide micro-array platform, we have determined initial phosphorylation rates and peptide substrate preference for the recombinant kinase domain (JH1) of JAK2, and two constructs comprising both the kinase and pseudokinase domains (JH1-JH2) of JAK2. The data demonstrate that (i) JH2 drastically decreases the activity of the JAK2 JH1 domain, (ii) JH2 increased the Kmfor ATP (iii) JH2 modulates the peptide preference of JAK2 (iv) the V617F mutation partially releases this inhibitory mechanism but does not significantly affect substrate preference or Kmfor ATP. These results provide the biochemical basis for understanding the interaction between the kinase and the pseudokinase domain of JAK2 and identify a novel regulatory role for the JAK2 pseudokinase domain. Additionally, this method can be used to identify new regulatory mechanisms for protein kinases that provide a better platform for designing specific strategies for therapeutic approaches

    Analysis of Janus Tyrosine Kinase Phosphorylation and Activation

    No full text
    Activation of Janus kinases (Jaks) occurs through autophosphorylation of key tyrosine residues located primarily within their catalytic domain. Phosphorylation of these tyrosine residues facilitates access of substrates to the active site and serves as an intrinsic indicator of Jak activation. Here, we describe the methods and strategies used for analyzing Jak phosphorylation and activation. Tyrosine-phosphorylated (active) Jaks are primarily detected from cell extracts using anti-phosphotyrosine-directed Western blot analysis of Jak-specific immunoprecipitates. Additionally, receptor pull-down and in vitro kinase assays can also be utilized to measure cellular Jak catalytic activity. In addition to tyrosine phosphorylation, recent evidence indicates Jaks can be serine phosphorylated upon cytokine stimulation, however the lack of commercially available antibodies to detect these sites has hindered their analysis by Western blot. However, phosphoamino acid analysis (PAA) has been employed to monitor Jak serine and threonine phosphorylation. Over the past decade, remarkable advances have been made in our understanding of Jak function and dysfunction, however much remains to be learned about their complex regulatory mechanisms

    Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions

    No full text
    Only about one third of humans possess a microbiota capable of transforming the dietary isoflavone daidzein into equol. Little is known about the dietary and physiological factors determining this ecological feature. In this study, the in vitro metabolism of daidzein by faecal samples from four human individuals was investigated. One culture produced the metabolites dihydrodaidzein and O-desmethylangolensin, another produced dihydrodaidzein and equol. From the latter, a stable and transferable mixed culture transforming daidzein into equol was obtained. Molecular fingerprinting analysis (denaturing gradient gel electrophoresis) showed the presence of four bacterial species of which only the first three strains could be brought into pure culture. These strains were identified as Lactobacillus mucosae EPI2, Enterococcus faecium EPI1 and Finegoldia magna EPI3, and did not produce equol in pure culture. The fourth species was tentatively identified as Veillonella sp strain EP. It was found that hydrogen gas in particular, but also butyrate and propionate, which are all colonic fermentation products from poorly digestible carbohydrates, stimulated equol production by the mixed culture. However, when fructo-oligosaccharides were added, equol production was inhibited. Furthermore, the equol-producing capacity of the isolated culture was maintained upon its addition to a faecal culture originating from a non-equol-producing individual
    corecore