171 research outputs found

    Mycobacterium tuberculosis osteomyelitis in a patient with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS): a case report

    Get PDF
    The incidence of tuberculosis is increasing in the United States. Extra-pulmonary involvement is more common in patients with HIV/AIDS. The diagnosis of Tuberculosis osteomyelitis requires a high degree of suspicion for accurate and timely diagnosis

    Mycobacterium tuberculosis monoarthritis in a child

    Get PDF
    A child with isolated Mycobacterium tuberculosis monoarthritis, with features initially suggesting oligoarthritis subtype of juvenile idiopathic arthritis, is presented. This patient illustrates the need to consider the possibility of tuberculosis as the cause of oligoarthritis in high-risk pediatric populations even in the absence of a tuberculosis contact history and without evidence of overt pulmonary disease

    Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nontypeable <it>Haemophilus influenzae </it>(NTHi) is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary disease, but its molecular interaction with human lung epithelial cells remains unclear. Herein, we tested that the hypothesis that NTHi induces the expression of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) via activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B in pulmonary alveolar epithelial cells.</p> <p>Methods</p> <p>Human alveolar epithelial A549 cells were infected with different concentrations of NTHi. The phosphorylation of p38 MAPK was detected by Western blot analysis, the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay (EMSA), and the expressions of COX-1 and 2 mRNA and PGE2 protein were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. The roles of Toll-like receptor (TLR) 2 and TLR4, well known NTHi recognizing receptor in lung epithelial cell and gram-negative bacteria receptor, respectively, on the NTHi-induced COX-2 expression were investigated in the HEK293 cells overexpressing TLR2 and TLR4 <it>in vitro </it>and in the mouse model of NTHi-induced pneumonia by using TLR2 and TLR4 knock-out mice <it>in vivo</it>. In addition, the role of p38 MAPK and NF-kappa B on the NTHi-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors.</p> <p>Results</p> <p>NTHi induced COX-2 mRNA expression in a dose-dependent manner, but not COX-1 mRNA expression in A549 cells. The enhanced expression of PGE2 by NTHi infection was significantly decreased by pre-treatment of COX-2 specific inhibitor, but not by COX-1 inhibitor. NTHi induced COX-2 expression was mediated by TLR2 in the epithelial cell <it>in vitro </it>and in the lungs of mice <it>in vivo</it>. NTHi induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B. Moreover, the expressions of COX-2 and PGE2 were significantly inhibited by specific inhibitors of p38 MAPK and NF-kappa B. However, NTHi-induced DNA binding activity of NF-kappa B was not affected by the inhibition of p38 MAPK.</p> <p>Conclusion</p> <p>NTHi induces COX-2 and PGE2 expression in a p38 MAPK and NF-kappa B-dependent manner through TLR2 in lung epithelial cells <it>in vitro </it>and lung tissues <it>in vivo</it>. The full understanding of the role of endogenous anti-inflammatory PGE2 and its regulation will bring new insight to the resolution of inflammation in pulmonary bacterial infections.</p

    Mycobacterium tuberculosis infection in immunocompetent children

    Full text link
    Objective . The purpose of this paper is to present our experience with Mycobacterium tuberculosis infections in immunocompetent children.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46707/1/247_2005_Article_BF01372093.pd

    Microarray Analysis of the Effect of Streptococcus equi subsp. zooepidemicus M-Like Protein in Infecting Porcine Pulmonary Alveolar Macrophage

    Get PDF
    Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection with S. zooepidemicus ATCC35246 wild strain (WD) and SzP-knockout strain (KO) using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis

    Lower Richness of Small Wild Mammal Species and Chagas Disease Risk

    Get PDF
    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease

    Sequence-Specific Binding of Recombinant Zbed4 to DNA: Insights into Zbed4 Participation in Gene Transcription and Its Association with Other Proteins

    Get PDF
    Zbed4, a member of the BED subclass of Zinc-finger proteins, is expressed in cone photoreceptors and glial Müller cells of human retina whereas it is only present in Müller cells of mouse retina. To characterize structural and functional properties of Zbed4, enough amounts of purified protein were needed. Thus, recombinant Zbed4 was expressed in E. coli and its refolding conditions optimized for the production of homogenous and functionally active protein. Zbed4’s secondary structure, determined by circular dichroism spectroscopy, showed that this protein contains 32% α-helices, 18% β-sheets, 20% turns and 30% unordered structures. CASTing was used to identify the target sites of Zbed4 in DNA. The majority of the DNA fragments obtained contained poly-Gs and some of them had, in addition, the core signature of GC boxes; a few clones had only GC-boxes. With electrophoretic mobility shift assays we demonstrated that Zbed4 binds both not only to DNA and but also to RNA oligonucleotides with very high affinity, interacting with poly-G tracts that have a minimum of 5 Gs; its binding to and GC-box consensus sequences. However, the latter binding depends on the GC-box flanking nucleotides. We also found that Zbed4 interacts in Y79 retinoblastoma cells with nuclear and cytoplasmic proteins Scaffold Attachment Factor B1 (SAFB1), estrogen receptor alpha (ERα), and cellular myosin 9 (MYH9), as shown with immunoprecipitation and mass spectrometry studies as well as gel overlay assays. In addition, immunostaining corroborated the co-localization of Zbed4 with these proteins. Most importantly, in vitro experiments using constructs containing promoters of genes directing expression of the luciferase gene, showed that Zbed4 transactivates the transcription of those promoters with poly-G tracts

    Cellular therapies for treating pain associated with spinal cord injury

    Get PDF
    Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing
    corecore