89 research outputs found

    Assessment of changes in ecosystem service delivery:a historical perspective on catchment landscapes

    Get PDF
    Although the relationships between habitats and ecosystem services (ESs) have been acknowledged, investigating spatio-temporal change in these has received far less attention. This study assesses the influence of habitat changes on ES delivery across space and time, based on two time points some 60 years apart, 1946 and 2009. A 1946 aerial photo coverage of two catchments in Scotland was used to construct digital photo mosaics which were then visually interpreted and digitised to derive historic habitat maps. Using the Spatial Evidence for Natural Capital Evaluation (SENCE) mapping approach, the derived habitat maps were translated into ES maps. These were then compared with contemporary ES maps of the two catchments, using the same mapping methodology. Increases in provisioning ESs were associated with increases in intensively managed habitats, with reductions in supply capacity of other regulating and supporting ESs associated with loss of semi-natural habitats. ES delivery was affected not only by gross area changes in habitats over time, but also by changes in configuration and spatial distribution of constituent habitats, including fragmentation and connectivity. It is argued that understanding historic changes in ESs adds an important strand in providing baselines to inform options for current and future management of catchments

    Coseismic fault lubrication by viscous deformation

    Get PDF
    Despite the hazard posed by earthquakes, we still lack fundamental understanding of the processes that control fault lubrication behind a propagating rupture front and enhance ground acceleration. Laboratory experiments show that fault materials dramatically weaken when sheared at seismic velocities (>0.1 m s−1). Several mechanisms, triggered by shear heating, have been proposed to explain the coseismic weakening of faults, but none of these mechanisms can account for experimental and seismological evidence of weakening. Here we show that, in laboratory experiments, weakening correlates with local temperatures attained during seismic slip in simulated faults for diverse rock-forming minerals. The fault strength evolves according to a simple, material-dependent Arrhenius-type law. Microstructures support this observation by showing the development of a principal slip zone with textures typical of sub-solidus viscous flow. We show evidence that viscous deformation (at either sub- or super-solidus temperatures) is an important, widespread and quantifiable coseismic lubrication process. The operation of these highly effective fault lubrication processes means that more energy is then available for rupture propagation and the radiation of hazardous seismic waves

    Microanalysis of Melt Pockets within Martian Meteorite DaG 476

    No full text

    Impacts on Earth in the Late Triassic

    No full text
    • …
    corecore