76 research outputs found
Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins
Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of < 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
Comparison of models for estimating methane emission factor for enteric fermentation of growing-finishing Hanwoo steers
Summary of clinically diagnosed amniotic fluid embolism cases in Korea and disagreement with 4 criteria proposed for research purpose
Objective: This study aimed 1) to investigate the clinical characteristics of amniotic fluid embolism (AFE) cases clinically diagnosed by maternal fetal medicine (MFM) specialists in Korea, 2) to check the disagreement with 4 recently proposed criteria by the Society for Maternal-Fetal Medicine (SMFM) for research purpose, and 3) to compare maternal outcomes between cases satisfying all 4 criteria and cases with at least 1 missing criterion. Methods This study included 12 patients clinically diagnosed with AFE from 7 referral hospitals in Korea. We collected information, including maternal age, symptoms of AFE, the amount of transfusion, and maternal mortality. Results The median maternal age was 33 years (range, 28-40 years). Regarding symptoms, cardiovascular arrest, hypotension, respiratory compromise, clinical coagulopathy, and neurologic signs were observed in 41.7%, 83.3%, 83.3%, 100%, and 66.7% of the cases, respectively. Among the 12 cases, 5 women died and 2 suffered severe neurologic disability, showing an intact survival rate of 41.7%. Disagreement with all 4 criteria proposed by the SMFM was found in 66.7% of the cases, due to the lack of criteria for disseminated intravascular coagulation or strict onset time (<30 minutes after delivery). There was no difference in maternal mortality and the amount of transfusion between cases satisfying all 4 criteria and cases with at least 1 missing criterion. Conclusion Two-thirds of clinically confirmed AFE cases did not satisfy all 4 criteria proposed by the SMFM, despite similar rates of maternal mortality with cases satisfying all 4 criteria. Our study suggests that there may be some discrepancy between the clinical diagnosis of AFE and the recent diagnostic criteria proposed by the SMFM for research purpose
Long-lived pressure-driven coherent structures in KSTAR plasmas
Highly coherent structures associated with an extremely long-lived saturated magnetohydrodynamic instability have been observed in KSTAR tokamak under a long-pulse and steady-state operation. They persist essentially unchanged for the full duration of a discharge up to 40 s, much longer than any dynamical or dissipative time scales in the system. Analysis of the data, supported by numerical simulations, indicates that they may be associated with a pressure-driven mode causing some degradation in the toroidal rotation, electron, and ion energy confinement. Published by AIP Publishing.open1121Ysciescopu
Effect of Cervical Cerclage on the Risk of Recurrent Preterm Birth after a Twin Spontaneous Preterm Birth
BACKGROUND: This study aimed to evaluate the effect of cervical cerclage on the recurrence risk for preterm birth in singleton pregnant women after a twin spontaneous preterm birth (sPTB). METHODS: This multicenter retrospective cohort study included women who had a singleton pregnancy from January 2009 to December 2018 at 10 referral hospitals and a twin sPTB before the current pregnancy. We compared the cervical lengths during pregnancy and pregnancy outcomes, according to the placement of prophylactic or emergency cerclage. We evaluated the independent risk factors for sPTB (< 37 weeks of gestation) in a subsequent singleton pregnancy. RESULTS: For the index singleton pregnancy, preterm birth occurred in seven (11.1%) of 63 women. There was no significant difference in the cervical lengths during pregnancy in women with and without cerclage. In a multivariate logistic regression analysis, the placement of emergency cerclage was an independent risk factor for subsequent singleton preterm birth (odds ratio [OR], 93.188; 95% confidence interval [CI], 1.633-5,316.628; P = 0.027); however, the placement of prophylactic cerclage (OR, 19.264; 95% CI, 0.915-405.786; P = 0.057) was not a factor. None of the women who received prophylactic cerclage delivered before 35 weeks' gestation in the index singleton pregnancy. CONCLUSION: Cerclage did not lower the risk of preterm birth in a subsequent singleton pregnancy after a twin sPTB. However, emergency cerclage was an independent risk factor for preterm birth and there was no preterm birth before 35 weeks' gestation in the prophylactic cerclage group. Therefore, close monitoring of the cervical length and prophylactic cerclage might be considered in women who have experienced a twin sPTB at extreme gestation
1α,25-Dihydroxyvitamin D3 (calcitriol) and its analogue, 19-nor-1α,25(OH)2D2, potentiate the effects of ionising radiation on human prostate cancer cells
DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the ‘exit gate’ may be an important determinant of this process
Micro-connectomics: probing the organization of neuronal networks at the cellular scale.
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group
- …
