10,883 research outputs found

    Successive spin-flop transitions of a Neel-type antiferromagnet Li2MnO3 single crystal with a honeycomb lattice

    Get PDF
    We have carried out high magnetic field studies of single-crystalline Li2MnO3, a honeycomb lattice antiferromagnet. Its magnetic phase diagram was mapped out using magnetization measurements at applied fields up to 35 T. Our results show that it undergoes two successive meta-magnetic transitions around 9 T fields applied perpendicular to the ab plane (along the c* axis). These phase transitions are completely absent in the magnetization measured with the field applied along the ab plane. In order to understand this magnetic phase diagram, we developed a mean-field model starting from the correct Neel-type magnetic structure, consistent with our single crystal neutron diffraction data at zero field. Our model calculations succeeded in explaining the two meta-magnetic transitions that arise when Li2MnO3 enters two different spin-flop phases from the zero field Neel phase.open1187Nsciescopu

    Temperature dependent core-level photoemission study of UNiSn

    Get PDF
    UNiSn undergoes an anomalous phase transition at T-N = 47 K, at which temperature it transforms from an antiferromagnetic metal to a paramagnetic semiconductor with an energy gap similar or equal to 70 meV. In order to investigate how the electronic structure of UNiSn changes as it crosses the transition temperature, we have used the X ray photoemission spectroscopy (XPS) technique from 20 to 70 K. According to the XPS studies, the U 4f core levels are almost temperature independent while the Ni 2p core levels and the satellite structure display a weak anomaly at T-N

    Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion

    Get PDF
    The concept of multiscale architectured materials is established using composition and grain size gradients. Composition-gradient nanostructured materials are produced from coarse grained interstitial free steels via carburization and high-pressure torsion. Quantitative analyses of the dislocation density using X-ray diffraction and microstructural studies clearly demonstrate the gradients of the dislocation density and grain size. The mechanical properties of the gradient materials are compared with homogeneous nanostructured carbon steel without a composition gradient in an effort to investigate the gradient effect. Based on the above observations, the potential of multiscale architecturing to open a new material property is discussed.111010Ysciescopu

    Informal Action—Adjudication—Rule Making: Some Recent Developments in Federal Administrative Law

    Get PDF
    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.QC 20140825</p

    Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles

    Get PDF
    Interparticle interaction of monodisperse Fe3 O4 nanoparticles has been experimentally investigated by dispersing the nanoparticles in solvents. With increasing the interparticle distances to larger than 100 nm in a controlled manner, the authors found that the blocking temperature (TB) of the nanoparticles drops continuously and eventually gets saturated with a total drop in TB of 7-17 K observed for 3, 5, and 7 nm samples, compared with their respective nanopowder samples. By carefully studying the dependence of TB on the interparticle distance, the authors could demonstrate that the experimental dependence of TB follows the theoretical curve of the dipole-dipole interaction. &#169; 2007 American Institute of Physics.open313

    Nemo: a computational tool for analyzing nematode locomotion

    Get PDF
    The nematode Caenorhabditis elegans responds to an impressive range of chemical, mechanical and thermal stimuli and is extensively used to investigate the molecular mechanisms that mediate chemosensation, mechanotransduction and thermosensation. The main behavioral output of these responses is manifested as alterations in animal locomotion. Monitoring and examination of such alterations requires tools to capture and quantify features of nematode movement. In this paper, we introduce Nemo (nematode movement), a computationally efficient and robust two-dimensional object tracking algorithm for automated detection and analysis of C. elegans locomotion. This algorithm enables precise measurement and feature extraction of nematode movement components. In addition, we develop a Graphical User Interface designed to facilitate processing and interpretation of movement data. While, in this study, we focus on the simple sinusoidal locomotion of C. elegans, our approach can be readily adapted to handle complicated locomotory behaviour patterns by including additional movement characteristics and parameters subject to quantification. Our software tool offers the capacity to extract, analyze and measure nematode locomotion features by processing simple video files. By allowing precise and quantitative assessment of behavioral traits, this tool will assist the genetic dissection and elucidation of the molecular mechanisms underlying specific behavioral responses.Comment: 12 pages, 2 figures. accepted by BMC Neuroscience 2007, 8:8

    More three-point correlators of giant magnons with finite size

    Full text link
    In the framework of the semiclassical approach, we compute the normalized structure constants in three-point correlation functions, when two of the vertex operators correspond to heavy string states, while the third vertex corresponds to a light state. This is done for the case when the heavy string states are finite-size giant magnons with one or two angular momenta, and for two different choices of the light state, corresponding to dilaton operator and primary scalar operator. The relevant operators in the dual gauge theory are Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5 and N = 4 super Yang-Mills. Then we extend the obtained results to the gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory, arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure

    Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins

    Get PDF
    Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of &lt; 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins

    A Prospective Longitudinal Study of the Clinical Outcomes from Cryptococcal Meningitis following Treatment Induction with 800 mg Oral Fluconazole in Blantyre, Malawi

    Get PDF
    Introduction: Cryptococcal meningitis is the most common neurological infection in HIV infected patients in Sub Saharan Africa, where gold standard treatment with intravenous amphotericin B and 5 flucytosine is often unavailable or difficult to administer. Fluconazole monotherapy is frequently recommended in national guidelines but is a fungistatic drug compromised by uncertainty over optimal dosing and a paucity of clinical end-point outcome data. Methods: From July 2010 until March 2011, HIV infected adults with a first episode of cryptococcal meningitis were recruited at Queen Elizabeth Central Hospital, Blantyre, Malawi. Patients were treated with oral fluconazole monotherapy 800 mg daily, as per national guidelines. ART was started at 4 weeks. Outcomes and factors associated with treatment failure were assessed 4, 10 and 52 weeks after fluconazole initiation. Results: Sixty patients were recruited. 26/60 (43%) died by 4 weeks. 35/60 (58.0%) and 43/56 (77%) died or failed treatment by 10 or 52 weeks respectively. Reduced consciousness (Glasgow Coma Score ,14 of 15), moderate/severe neurological disability (modified Rankin Score .3 of 5) and confusion (Abbreviated Mental Test Score ,8 of 10) were all common at baseline and associated with death or treatment failure. ART prior to recruitment was not associated with better outcomes. Conclusions: Mortality and treatment failure from cryptococcal meningitis following initiation of treatment with 800 mg oral fluconazole is unacceptably high. To improve outcomes, there is an urgent need for better therapeutic strategies and point-of-care diagnostics, allowing earlier diagnosis before development of neurological deficit

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late
    corecore