1,545 research outputs found

    Probabilistic Timed Automata with Clock-Dependent Probabilities

    Get PDF
    Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.Comment: Full version of a paper published at RP 201

    Thermodynamic insights and assessment of the ‘circular economy’

    Get PDF
    This study analyses the effect on energy use of applying a wide range of circular economy approaches. By collating evidence on specific quantifiable approaches and then calculating and analyzing their combined full supply chain impacts through input-output analysis, it provides a more complete assessment of the overall potential scope for energy savings that these approaches might deliver than provided elsewhere. Assessment is conducted globally, across the EU-27 and in the UK. Overall, the identified opportunities have the potential to save 6%–11% of energy used to support economic activity, worldwide and in the EU, and 5%–8% in the UK. Their potential is equivalent to the total scope for other industrial energy efficiency savings. The potential savings are further divided into those due to sets of approaches relating to food waste, steel production, other materials production, product refurbishment, vehicle provision, construction and other equipment manufacture. Each of these sets of approaches can make a key contribution to the total savings that are possible. Complementary use of energy and exergy metrics illustrates the way in which energy use might change and for the first time provides indication that in most cases other energy efficiency measures are unlikely to be adversely affected by the circular economy approaches. Potential for savings in the energy embodied in each key product input to each major sector is assessed, enabling prioritization of the areas in which the circular economy approaches have the greatest scope for impact and identification of supply chains for which they are underrepresented

    Thermodynamic insights and assessment of the ‘circular economy’

    Get PDF
    This study analyses the effect on energy use of applying a wide range of circular economy approaches. By collating evidence on specific quantifiable approaches and then calculating and analyzing their combined full supply chain impacts through input-output analysis, it provides a more complete assessment of the overall potential scope for energy savings that these approaches might deliver than provided elsewhere. Assessment is conducted globally, across the EU-27 and in the UK. Overall, the identified opportunities have the potential to save 6%–11% of energy used to support economic activity, worldwide and in the EU, and 5%–8% in the UK. Their potential is equivalent to the total scope for other industrial energy efficiency savings. The potential savings are further divided into those due to sets of approaches relating to food waste, steel production, other materials production, product refurbishment, vehicle provision, construction and other equipment manufacture. Each of these sets of approaches can make a key contribution to the total savings that are possible. Complementary use of energy and exergy metrics illustrates the way in which energy use might change and for the first time provides indication that in most cases other energy efficiency measures are unlikely to be adversely affected by the circular economy approaches. Potential for savings in the energy embodied in each key product input to each major sector is assessed, enabling prioritization of the areas in which the circular economy approaches have the greatest scope for impact and identification of supply chains for which they are underrepresented

    A human-centered design methodology to enhance the usability, human factors, and user experience of connected health systems: a three-phase methodology.

    Get PDF
    peer-reviewedDesign processes such as human-centered design, which involve the end user throughout the product development and testing process, can be crucial in ensuring that the product meets the needs and capabilities of the user, particularly in terms of safety and user experience. The structured and iterative nature of human-centered design can often present a challenge when design teams are faced with the necessary, rapid, product development life cycles associated with the competitive connected health industry. We wanted to derive a structured methodology that followed the principles of human-centered design that would allow designers and developers to ensure that the needs of the user are taken into account throughout the design process, while maintaining a rapid pace of development. In this paper, we present the methodology and its rationale before outlining how it was applied to assess and enhance the usability, human factors, and user experience of a connected health system known as the Wireless Insole for Independent and Safe Elderly Living (WIISEL) system, a system designed to continuously assess fall risk by measuring gait and balance parameters associated with fall risk. We derived a three-phase methodology. In Phase 1 we emphasized the construction of a use case document. This document can be used to detail the context of use of the system by utilizing storyboarding, paper prototypes, and mock-ups in conjunction with user interviews to gather insightful user feedback on different proposed concepts. In Phase 2 we emphasized the use of expert usability inspections such as heuristic evaluations and cognitive walkthroughs with small multidisciplinary groups to review the prototypes born out of the Phase 1 feedback. Finally, in Phase 3 we emphasized classical user testing with target end users, using various metrics to measure the user experience and improve the final prototypes. We report a successful implementation of the methodology for the design and development of a system for detecting and predicting falls in older adults. We describe in detail what testing and evaluation activities we carried out to effectively test the system and overcome usability and human factors problems. We feel this methodology can be applied to a wide variety of connected health devices and systems. We consider this a methodology that can be scaled to different-sized projects accordingly.PUBLISHEDpeer-reviewe

    Complex spectral evolution in a BCS superconductor, ZrB12

    Get PDF
    We investigate the electronic structure of a complex conventional superconductor, ZrB12 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The experimental valence band spectra could be described reasonably well within the local density approximation. Energy bands close to the Fermi level possess t2g symmetry and the Fermi level is found to be in the proximity of quantum fluctuation regime. The spectral lineshape in the high resolution spectra is complex exhibiting signature of a deviation from Fermi liquid behavior. A dip at the Fermi level emerges above the superconducting transition temperature that gradually grows with the decrease in temperature. The spectral simulation of the dip and spectral lineshape based on a phenomenological self energy suggests finite electron pair lifetime and a pseudogap above the superconducting transition temperature

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Shuttle walk tests in people with COPD who demonstrate exercise-induced oxygen desaturation: An analysis of test repeatability and cardiorespiratory responses

    Get PDF
    © 2017, © The Author(s) 2017. Exercise-induced oxygen desaturation (EID) is prevalent in people with chronic obstructive pulmonary disease (COPD). This article reports a sub-analysis from a randomized controlled trial (RCT) in people with COPD and EID (COPD/EID). The primary aim, in people with COPD/ EID, was to determine the repeatability of the distance and time walked in the incremental shuttle walk test (ISWT) and endurance shuttle walk test (ESWT), respectively. A secondary aim was to determine whether any participant characteristics predicted those who did not demonstrate improvements on a repeat ISWT or ESWT. Participants with nadir oxygen saturation (SpO2) < 90% on the 6-minute walk test were recruited to the RCT. Two ISWTs and two ESWTs were then performed as part of the baseline assessments, and participants were included in this sub-analysis if their nadir SpO2was <90% during the better of two ISWTs. Repeatability of the tests was analysed using Bland–Altman plots and paired t-tests. Participant characteristics of age, lung function, level of nadir SpO2and end-test dyspnoea were used to predict those who were not likely to demonstrate improvements on a repeat test using receiver operating curves. Eighty-seven participants (mean age (standard deviation, SD) 70 (7) years; forced expiratory volume in one second (FEV1) 47 (17)% predicted) were included. The mean differences (coefficient of repeatability) for the ISWTs and ESWTs were 9 m (55 m) and 19 seconds (142 seconds) respectively (p < 0.05). No participant characteristic predicted the absence of improvement on the second ISWT (area under the curve (AUC) ranged from 0.49 to 0.58, all p > 0.2) or the second ESWT (AUC ranged from 0.43 to 0.52, all p > 0.3). Although repeating the tests showed only small improvements in distance (ISWT) and time (ESWT) walked in people with COPD/EID, the variability was large making definite conclusions about test repeatability in these individuals difficult

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    Do you think it's a disease? a survey of medical students

    Get PDF
    Background: The management of medical conditions is influenced by whether clinicians regard them as "disease" or "not a disease". The aim of the survey was to determine how medical students classify a range of conditions they might encounter in their professional lives and whether a different name for a condition would influence their decision in the categorisation of the condition as a 'disease' or 'not a disease'. Methods. We surveyed 3 concurrent years of medical students to classify 36 candidate conditions into "disease" and "non-disease". The conditions were given a 'medical' label and a (lay) label and positioned where possible in alternate columns of the survey. Results: The response rate was 96% (183 of 190 students attending a lecture): 80% of students concurred on 16 conditions as "disease" (eg diabetes, tuberculosis), and 4 as "non- disease" (eg baldness, menopause, fractured skull and heat stroke). The remaining 16 conditions (with 21-79% agreement) were more contentious (especially obesity, infertility, hay fever, alcoholism, and restless leg syndrome). Three pairs of conditions had both a more, and a less, medical label: the more medical labels (myalgic encephalomyelitis, hypertension, and erectile dysfunction) were more frequently classified as 'disease' than the less medical (chronic fatigue syndrome, high blood pressure, and impotence), respectively, significantly different for the first two pairs. Conclusions: Some conditions excluded from the classification of "disease" were unexpected (eg fractured skull and heat stroke). Students were mostly concordant on what conditions should be classified as "disease". They were more likely to classify synonyms as 'disease' if the label was medical. The findings indicate there is still a problem 30 years on in the concept of 'what is a disease'. Our findings suggest that we should be addressing such concepts to medical students

    Conscious thought beats deliberation without attention in diagnostic decision-making: at least when you are an expert

    Get PDF
    Contrary to what common sense makes us believe, deliberation without attention has recently been suggested to produce better decisions in complex situations than deliberation with attention. Based on differences between cognitive processes of experts and novices, we hypothesized that experts make in fact better decisions after consciously thinking about complex problems whereas novices may benefit from deliberation-without-attention. These hypotheses were confirmed in a study among doctors and medical students. They diagnosed complex and routine problems under three conditions, an immediate-decision condition and two delayed conditions: conscious thought and deliberation-without-attention. Doctors did better with conscious deliberation when problems were complex, whereas reasoning mode did not matter in simple problems. In contrast, deliberation-without-attention improved novices’ decisions, but only in simple problems. Experts benefit from consciously thinking about complex problems; for novices thinking does not help in those cases
    corecore