85 research outputs found

    Protein digestibility and relevance to allergenicity.

    Get PDF
    In January 2001 a Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Consultation Committee on Allergenicity of Foods Derived from Biotechnology published a report outlining in detail an approach for assessing the allergenic potential of novel proteins. One component of this decision tree is a determination of whether the protein of interest is resistant to proteolytic digestion. Although these (Italic)in vitro(/Italic) methodologies have been useful, the correlation between resistance to proteolysis and allergenic activity is not absolute. Two views and highlights of supporting research regarding the relationship of resistance to digestion and allergenicity are presented in this article

    Dapsone‐ and nitroso dapsone‐specific activation of T cells from hypersensitive patients expressing the risk allele HLA‐B*13:01

    Get PDF
    BACKGROUND:Research into drug hypersensitivity associated with expression of specific HLA alleles has focussed on the interaction between parent drug and the HLA with no attention given to reactive metabolites. For this reason, we have studied HLA-B*13:01-linked dapsone hypersensitivity to (1) explore whether the parent drug and/or nitroso metabolite activates T-cells and (2) determine whether HLA-B*13:01 is involved in the response. METHODS:PBMC from 6 patients were cultured with dapsone and nitroso dapsone and proliferative responses and IFN-γ release were measured. Dapsone- and nitroso dapsone-specific T-cell clones were generated and phenotype, function, HLA allele restriction and cross-reactivity assessed. Dapsone intermediates were characterized by mass spectrometry. RESULTS:PBMC from 6 patients and cloned T-cells proliferated and secreted Th1/2/22 cytokines when stimulated with dapsone (clones: n=395; 80% CD4+ CXCR3hi CCR4hi , 20% CD8+CXCR3hi CCR4hi CCR6hi CCR9hi CCR10hi ) and nitroso dapsone (clones: n=399; 78% CD4+, 22% CD8+ with same chemokine receptor profile). CD4+ and CD8+ clones were HLA-class II and class I restricted, respectively, and displayed three patterns of reactivity: compound-specific, weakly crossreactive and strongly cross reactive. Nitroso dapsone formed dimers in culture and was reduced to dapsone, providing a rationale for the crossreactivity. T-cell responses to nitroso dapsone were dependent on the formation of a cysteine-modified protein adduct, while dapsone interacted in a labile manner with antigen presenting cells. CD8+ clones displayed an HLA-B*13:01-restricted pattern of activation. CONCLUSION:These studies describe the phenotype and function of dapsone- and nitroso dapsone-responsive CD4+ and CD8+ T-cells from hypersensitive patients. Discovery of HLA-B*13:01-restricted CD8+ T-cell responses indicates that drugs and their reactive metabolites participate in HLA allele-linked forms of hypersensitivity. This article is protected by copyright. All rights reserved

    Inhalationsanästhetika (IA)

    No full text

    Systems biology tools for toxicology

    Get PDF

    A mathematical modelling approach to assessing the reliability of biomarkers of glutathione metabolism

    No full text
    NatuurwetenskappeBiochemiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Glutathione metabolism modeling: A mechanism for liver drug-robustness and a new biomarker strategy

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)NatuurwetenskappeBiochemi
    corecore