69 research outputs found

    Fairy, tadpole, and clam shrimps (Branchiopoda) in seasonally inundated clay pans in the western Mojave Desert and effect on primary producers

    Get PDF
    Abstract Background Fairy shrimps (Anostraca), tadpole shrimps (Notostraca), clam shrimps (Spinicaudata), algae (primarily filamentous blue-green algae [cyanobacteria]), and suspended organic particulates are dominant food web components of the seasonally inundated pans and playas of the western Mojave Desert in California. We examined the extent to which these branchiopods controlled algal abundance and species composition in clay pans between Rosamond and Rogers Dry Lakes. We surveyed branchiopods during the wet season to estimate abundances and then conducted a laboratory microcosm experiment, in which dried sediment containing cysts and the overlying algal crust were inundated and cultured. Microcosm trials were run with and without shrimps; each type of trial was run for two lengths of time: 30 and 60 days. We estimated the effect of shrimps on algae by measuring chlorophyll content and the relative abundance of algal species. Results We found two species of fairy shrimps (Branchinecta mackini and B. gigas), one tadpole shrimp (Lepidurus lemmoni), and a clam shrimp (Cyzicus setosa) in our wet-season field survey. We collected Branchinecta lindahli in a pilot study, but not subsequently. The dominant taxa were C. setosa and B. mackini, but abundances and species composition varied greatly among playas. The same species found in field surveys also occurred in the microcosm experiment. There were no significant differences as a function of experimental treatments for either chlorophyll content or algal species composition (Microcoleus vaginatus dominated all treatments). Conclusions The results suggest that there was no direct effect of shrimps on algae. Although the pans harbored an apparently high abundance of branchiopods, these animals had little role in regulating primary producers in this environment

    Comparative chromosome painting discloses homologous Segments in distantly related mammals

    Get PDF
    Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow sorted human chromosomes 1,16,17 and X, and mouse chromosome 11 discloses the presence of syntenic groups in distantly related mammalian Orders ranging from primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These mammalian Orders have evolved separately for 55-80 million years (Myr). We conclude that ZOO-FISH can be used to generate comparative chromosome maps of a large number of mammalian species

    Giving risk management culture a role in strategic planning

    Get PDF
    WOS: 000413939000023Strategically planned and implemented risk management paves the way for competitive advantage and a decisive edge for global financial institutions. The importance of risk management becomes more evident in financial instability periods. The failure of global financial institutions in the recent financial crisis revealed that firms with strong risk management and culture were more prepared and economically less damaged. As financial institutions have been criticized severely about risk management practices, it also becomes clear that most financial institutions have difficulties in developing a risk management culture. To have a clear understanding of risk management culture, the chapter aims to highlight a need to extend our understanding of risk management culture and how it can find a voice in the strategic planning of global financial institutions

    A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps

    Get PDF
    Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than ‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds

    Epigenetics and airways disease

    Get PDF
    Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore