30 research outputs found

    Epidermal growth factor receptor structural alterations in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>EGFR overexpression has been described in many human tumours including gastric cancer. In NSCLC patients somatic EGFR mutations, within the kinase domain of the protein, as well as gene amplification were associated with a good clinical response to EGFR inhibitors. In gastric tumours data concerning structural alterations of EGFR remains controversial. Given its possible therapeutic relevance, we aimed to determine the frequency and type of structural alterations of the <it>EGFR </it>gene in a series of primary gastric carcinomas.</p> <p>Methods</p> <p>Direct sequencing of the kinase domain of the <it>EGFR </it>gene was performed in a series of 77 primary gastric carcinomas. FISH analysis was performed in 30 cases. Association studies between <it>EGFR </it>alterations and the clinical pathological features of the tumours were performed.</p> <p>Results</p> <p>Within the 77 primary gastric carcinomas we found two <it>EGFR </it>somatic mutations and several <it>EGFR </it>polymorphisms in exon 20. Six different intronic sequence variants of <it>EGFR </it>were also found. Four gastric carcinomas showed balanced polysomy or <it>EGFR </it>gene amplification. We verified that gastric carcinoma with alterations of <it>EGFR </it>(somatic mutations or copy number variation) showed a significant increase of tumour size (<it>p </it>= 0.0094) in comparison to wild-type <it>EGFR </it>carcinomas.</p> <p>Conclusion</p> <p>We demonstrate that <it>EGFR </it>structural alterations are rare in gastric carcinoma, but whenever present, it leads to tumour growth. We considered that searching for <it>EGFR </it>alterations in gastric cancer is likely to be clinically important in order to identify patients susceptible to respond to tyrosine kinase inhibitors.</p

    How do NHS organisations plan research capacity development? Strategies, strengths, and opportunities for improvement

    Get PDF
    Research that is integral into a 'learning healthcare system' can promote cost effective services and knowledge creation. As such, research is defined as a 'core function' in UK health service organisations, and is often planned through research and development (R&D) strategies that aim to promote research activity and research capacity development (RCD). The discussion focuses around the content of ten R&D strategies for healthcare organisations in England and Scotland, with respect to RCD. These organisations were engaged with a research interest network called ACORN (Addressing Organisational Capacity to do Research Network) that included two Scottish Health Boards, four community and mental health trusts, two provincial district hospitals, and two teaching hospitals. We undertook a thematic documentary analysis of the R&D strategies which identified 11 'core activities' of RCD. The potential for building research capacity in these 'core activities' was established by reviewing them through the lens of a RCD framework. Core activities aimed to 'hard wire' RCD into health organisations. They demonstrated a complex interplay between developing a strong internal organisational infrastructure, and supporting individual career planning and skills development, in turn enabled by organisational processes. They also included activities to build stronger inter-organisational relationships and networks. Practitioner, manager and patient involvement was a cross cutting theme. The potential to demonstrate progress was included in plans through monitoring activity across all RCD principles. Strategies were primarily aimed at research production rather than research use. Developing 'actionable dissemination' was poorly addressed in the strategies, and represents an area for improvement. We describe strengths of RCD planning activities, and opportunities for improvement. We explore how national policy and research funders can influence health systems' engagement in research

    Outcome and human epidermal growth factor receptor (HER) 1–4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling

    Get PDF
    BACKGROUND: We have shown previously that whereas overexpression of human epidermal growth factor receptor (HER)1, HER2 and HER3 is associated with poor prognosis in breast cancer, HER4 is associated with a good prognosis. Cell proliferation is a key component of aggressive cancers and is driven by growth factors. In this study, bromodeoxyuridine (BrdU)-derived proliferation indices are correlated with clinical outcome and HER1–4 status for further clarification of the differing roles for the HER family at a biological level. METHODS: Seventy-eight invasive breast cancers had BrdU labelling in vivo to determine the BrdU labelling index (BLI) and the potential tumour doubling time (T(pot)). Long-term clinical follow-up was available for these patients. We used immunohistochemistry to establish the HER1–4 status in 55 patients from the BrdU cohort. RESULTS: We demonstrate a significant correlation between high BLI values and breast cancer-specific death (P = 0.0174). Low T(pot )times were also significantly correlated with breast cancer-specific death (P = 0.0258). However, BLI did not independently predict survival in Cox's multiple regression analysis when combined with other prognostic factors such as size, grade and nodal status. Tumours found to be positive for HER1, HER2 or HER3 had significantly (P = 0.041) higher labelling indices, with HER1 also showing significantly higher indices when considered independently (P = 0.024). Conversely, HER4 positivity was significantly correlated (P = 0.013) with low BLI values, in line with previous data associating this receptor with good prognosis tumours. CONCLUSIONS: These results support the hypothesis that HER1–3 are associated with driving tumour proliferation, whereas HER4 is involved in a non-proliferative or even protective role

    The role of the epidermal growth factor receptor in breast cancer

    No full text
    Recent trials of drug therapy targeting the erbB receptor HER2 have met with success in breast cancer. The epidermal growth factor receptor or EGFR is a closely related receptor from this same family that is involved in cellular signal transduction and tumor cell growth and survival. Emerging evidence indicates that EGFR is implicated in the development of hormone-resistant breast cancer, and that its activity is intertwined with estrogen receptor. Here, the role of EGFR in breast cancer is reviewed, and data from selected clinical trials of signal transduction inhibition of this cellular target are summarized
    corecore