21 research outputs found

    The learning styles neuromyth:when the same term means different things to different teachers

    Get PDF
    Alexia Barrable - ORCID: 0000-0002-5352-8330 https://orcid.org/0000-0002-5352-8330Although learning styles (LS) have been recognised as a neuromyth, they remain a virtual truism within education. A point of concern is that the term LS has been used within theories that describe them using completely different notions and categorisations. This is the first empirical study to investigate education professionals’ conceptualisation, as well as means of identifying and implementing LS in their classroom. A sample of 123 education professionals were administered a questionnaire consisting both closed- and open-ended questions. Responses were analysed using thematic analysis. LS were found to be mainly conceptualised within the Visual-Auditory-(Reading)-Kinaesthetic (VAK/VARK) framework, as well as Gardner’s multiple intelligences. Moreover, a lot of education professionals confused theories of learning (e.g., behavioural or cognitive theories) with LS. In terms of identifying LS, educators reported using a variety of methods, spanning from observation and everyday contact to the use of tests. The ways LS were implemented in the classroom were numerous, comprising various teaching aids, participatory techniques and motor activities. Overall, we argue that the extended use of the term LS gives the illusion of a consensus amongst educators, when a closer examination reveals that the term LS is conceptualised, identified and implemented idiosyncratically by different individuals. This study aims to be of use to pre-service and in-service teacher educators in their effort to debunk the neuromyth of LS and replace it with evidence-based practices.https://doi.org/10.1007/s10212-020-00485-236pubpub

    Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    Get PDF
    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC

    Research On and Activities For Mathematically Gifted Students

    Get PDF
    This Topical Survey offers a brief overview of the current state of research on and activities for mathematically gifted students around the world. This is of interest to a broad readership, including educational researchers, research mathematicians, mathematics teachers, teacher educators, curriculum designers, doctoral students, and other stakeholders. It first discusses research concerning the nature of mathematical giftedness, including theoretical frameworks and methodologies that are helpful in identifying and/or creating mathematically gifted students, which is described in this section. It also focuses on research on and the development of mathematical talent and innovation in students, including connections between cognitive, social and affective aspects of mathematically gifted students. Exemplary teaching and learning practices, curricula and a variety of programs that contribute to the development of mathematical talent, gifts, and passion are described as well as the pedagogy and mathematics content suitable for educating pre-service and in-service teachers of mathematically gifted students. The final section provides a brief summary of the paper along with suggestions for the research, activities, and resources that should be available to support mathematically gifted students and their teachers, parents, and other stakeholders

    Imaging imagination: Brain scanning of the imagined future

    No full text
    In this chapter we review an emerging literature concerning the neuroimaging of various subcomponents of imagination. The preliminary conclusions of this review are two-fold. First, acts of imagination recruit similar networks in the brain to those used for the sensory and motor processing during corresponding actions in, or interactions with the real world (with the important exception that imagined movements do not activate the primary motor cortex). That the majority of studies reviewed have been concerned with visual imagery was inevitable since this is the form of imagination for which most neuroimaging experiments have been conducted. It should be noted that this first conclusion is relevant to all forms of imagination, and not just those of veridical imagery, where there is a 'real world' referent for the imaginary content. Second, the selection processes used in subcomponents of imagination such as anticipation, mindedness, and counterfactual thinking rely on widely distributed subcortical and cortical networks within the brain, consisting of important components such as the cingulate cortex, the dorsolateral prefrontal cortex, the cerebellum, and the orbitofrontal cortex. These neural structures play quite different functional roles in the complex interactions of real and imagined acts that constitute human thought and behaviour. Further knowledge of the precise functional roles of the interacting networks can be expected from neuroimaging in the coming years, perhaps through the technical breakthroughs which we imagine in a Coda and which could potentially facilitate and enhance our understanding of imagination in the future. © The British Academy 2007
    corecore