44 research outputs found

    Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams

    Get PDF
    Next generation intense, short-pulse laser facilities require new high repetition rate diagnostics for the detection of ionizing radiation. We have designed a new scintillator-based ion beam profiler capable of measuring the ion beam transverse profile for a number of discrete energy ranges. The optical response and emission characteristics of four common plastic scintillators has been investigated for a range of proton energies and fluxes. The scintillator light output (for 1 MeV > Ep < 28 MeV) was found to have a non-linear scaling with proton energy but a linear response to incident flux. Initial measurements with a prototype diagnostic have been successful, although further calibration work is required to characterize the total system response and limitations under the high flux, short pulse duration conditions of a typical high intensity laser-plasma interaction

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Structure and Dynamics of Biological Systems: Integration of Neutron Scattering with Computer Simulation

    Full text link
    The combination of molecular dynamics simulation and neutron scattering techniques has emerged as a highly synergistic approach to elucidate the atomistic details of the structure, dynamics and functions of biological systems. Simulation models can be tested by calculating neutron scattering structure factors and comparing the results directly with experiments. If the scattering profiles agree the simulations can be used to provide a detailed decomposition and interpretation of the experiments, and if not, the models can be rationally adjusted. Comparison with neutron experiment can be made at the level of the scattering functions or, less directly, of structural and dynamical quantities derived from them. Here, we examine the combination of simulation and experiment in the interpretation of SANS and inelastic scattering experiments on the structure and dynamics of proteins and other biopolymers

    A dystrophic muscle broadens the contribution and activation of immune cells reacting to rAAV gene transfer

    No full text
    Recombinant adeno-associated viral vectors (rAAVs) are used for therapeutic gene transfer in skeletal muscle, but it is unclear if immune reactivity to gene transfer and persistence of transgene are affected by pathologic conditions such as muscular dystrophy. Thus, we compared dystrophic mice devoid of α-sarcoglycan with healthy mice to characterize immune cell activation and cellular populations contributing to the loss of gene-modified myofibers. Following rAAV2/1 delivery of an immunogenic α-sarcoglycan reporter transgene in the muscle, both strains developed strong CD4 and CD8 T-cell-mediated immune responses in lymphoid organs associated with muscle CD3+ T and CD11b+ mononuclear cell infiltrates. Selective cell subset depletion models revealed that CD4+ T cells were essential for transgene rejection in both healthy and pathologic mice, but macrophages and CD8+ T cells additionally contributed as effector cells of transgene rejection only in dystrophic mice. Vectors restricting transgene expression in antigen-presenting cells showed that endogenous presentation of transgene products was the sole mechanism responsible for T-cell priming in normal mice, whereas additional and protracted antigenic presentation occurred in dystrophic animals, leading to secondary CD4+ T-cell activation and failure to maintain transgene expression. Therefore, the dystrophic environment diversifies cellular immune response mechanisms induced by gene transfer, with a negative outcome
    corecore