258 research outputs found

    Large aneurysmal bone cyst of iliac bone in a female child: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Symptomatic aneurysmal bone cysts in pediatric age group with an expansile lesion in ilium is a rare occurrence.</p> <p>Case</p> <p>An 11-year-old female presented with a swelling over her right iliac region and numbness along the medial aspect of thigh. Clinicoradiological diagnosis was aneurysmal bone cyst confirmed on fine needle aspiration cytology. Excision curettage (wide margin excision of the soft tissue tumor and intralesional curettage in the region of acetabulum) of the tumor was performed in view of proximity to acetabular roof and endangered hip stability.</p> <p>Result</p> <p>At follow up of 18 months, the child has full painless range of movements in the hip joint with no recurrence.</p> <p>Conclusions</p> <p>Pelvic aneurysmal bone cysts are distinctly rare in pediatric age. The lesion was associated with an atypical symptom of numbness along the femoral nerve distribution. Hip stability and range of movements were major concern in this patient. Although many treatment options are described, surgical excision still remains the mainstay. In our case, we performed excision curettage, with good outcome.</p

    Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network

    Full text link
    The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than later born neurons. This indicates that the longer time frame available to them might underlie high connectivity. Both outcomes are not observed for random connection formation. The study finds that around one-third of electrically coupled long-range connections are late forming, raising the question of what mechanisms are involved in ensuring their accuracy, particularly in light of the extremely invariant connectivity observed in C. elegans. In conclusion, the sequence of neural network development highlights the possibility of early contact or interaction in securing long-distance and high-degree connectivity

    Long-lived pressure-driven coherent structures in KSTAR plasmas

    Get PDF
    Highly coherent structures associated with an extremely long-lived saturated magnetohydrodynamic instability have been observed in KSTAR tokamak under a long-pulse and steady-state operation. They persist essentially unchanged for the full duration of a discharge up to 40 s, much longer than any dynamical or dissipative time scales in the system. Analysis of the data, supported by numerical simulations, indicates that they may be associated with a pressure-driven mode causing some degradation in the toroidal rotation, electron, and ion energy confinement. Published by AIP Publishing.open1121Ysciescopu

    Subsequent chemotherapy reverses acquired tyrosine kinase inhibitor resistance and restores response to tyrosine kinase inhibitor in advanced non-small-cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with advanced or metastatic non-small cell lung cancer (NSCLC) can develop acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. Here, we report the successful treatment with alternating chemotherapy and TKIs of two cases of advanced NSCLC who developed resistance to TKI.</p> <p>Case presentation</p> <p>Two patients with advanced or metastatic NSCLC were treated with palliative chemotherapy followed by erlotinib/gefitinib. When TKI therapy failed, two cycles of chemotherapy were provided, which were followed by re-challenge with erlotinib or gefitinib.</p> <p>Conclusion</p> <p>NSCLC patients with acquired TKI resistance should be managed aggressively whenever possible. Subsequent chemotherapy and target treatment is one of the reasonable choices for those with an initial dramatic clinical response with erlotinib/gefitinib treatment. Further studies are warranted to substantiate the association of erlotinib /gefitinib treatment with the efficacy of NSCLC patients with acquired TKI failure.</p

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island

    Get PDF
    Background: Toxigenic Corynebacterium ulcerans can cause a diphtheria-like illness in humans and have been found in domestic animals, which were suspected to serve as reservoirs for a zoonotic transmission. Additionally, toxigenic C. ulcerans were reported to take over the leading role in causing diphtheria in the last years in many industrialized countries. Methods: To gain deeper insights into the tox gene locus and to understand the transmission pathway in detail, we analyzed nine isolates derived from human patients and their domestic animals applying next generation sequencing and comparative genomics. Results: We provide molecular evidence for zoonotic transmission of C. ulcerans in four cases and demonstrate the superior resolution of next generation sequencing compared to multi-locus sequence typing for epidemiologic research. Additionally, we provide evidence that the virulence of C. ulcerans can change rapidly by acquisition of novel virulence genes. This mechanism is exemplified by an isolate which acquired a prophage not present in the corresponding isolate from the domestic animal. This prophage contains a putative novel virulence factor, which shares high identity with the RhuM virulence factor from Salmonella enterica but which is unknown in Corynebacteria so far. Furthermore, we identified a putative pathogenicity island for C. ulcerans bearing a diphtheria toxin gene. Conclusion: The novel putative diphtheria toxin pathogenicity island could provide a new and alternative pathway for Corynebacteria to acquire a functional diphtheria toxin-encoding gene by horizontal gene transfer, distinct from the previously well characterized phage infection model. The novel transmission pathway might explain the unexpectedly high number of toxigenic C. ulcerans

    The Caenorhabditis elegans Mucin-Like Protein OSM-8 Negatively Regulates Osmosensitive Physiology Via the Transmembrane Protein PTR-23

    Get PDF
    The molecular mechanisms of animal cell osmoregulation are poorly understood. Genetic studies of osmoregulation in yeast have identified mucin-like proteins as critical regulators of osmosensitive signaling and gene expression. Whether mucins play similar roles in higher organisms is not known. Here, we show that mutations in the Caenorhabditis elegans mucin-like gene osm-8 specifically disrupt osmoregulatory physiological processes. In osm-8 mutants, normal physiological responses to hypertonic stress, such as the accumulation of organic osmolytes and activation of osmoresponsive gene expression, are constitutively activated. As a result, osm-8 mutants exhibit resistance to normally lethal levels of hypertonic stress and have an osmotic stress resistance (Osr) phenotype. To identify genes required for Osm-8 phenotypes, we performed a genome-wide RNAi osm-8 suppressor screen. After screening ∼18,000 gene knockdowns, we identified 27 suppressors that specifically affect the constitutive osmosensitive gene expression and Osr phenotypes of osm-8 mutants. We found that one suppressor, the transmembrane protein PTR-23, is co-expressed with osm-8 in the hypodermis and strongly suppresses several Osm-8 phenotypes, including the transcriptional activation of many osmosensitive mRNAs, constitutive glycerol accumulation, and osmotic stress resistance. Our studies are the first to show that an extracellular mucin-like protein plays an important role in animal osmoregulation in a manner that requires the activity of a novel transmembrane protein. Given that mucins and transmembrane proteins play similar roles in yeast osmoregulation, our findings suggest a possible evolutionarily conserved role for the mucin-plasma membrane interface in eukaryotic osmoregulation

    Dynamic Changes in the MicroRNA Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain

    Get PDF
    Neuropathic pain resulting from nerve lesions or dysfunction represents one of the most challenging neurological diseases to treat. A better understanding of the molecular mechanisms responsible for causing these maladaptive responses can help develop novel therapeutic strategies and biomarkers for neuropathic pain. We performed a miRNA expression profiling study of dorsal root ganglion (DRG) tissue from rats four weeks post spinal nerve ligation (SNL), a model of neuropathic pain. TaqMan low density arrays identified 63 miRNAs whose level of expression was significantly altered following SNL surgery. Of these, 59 were downregulated and the ipsilateral L4 DRG, not the injured L5 DRG, showed the most significant downregulation suggesting that miRNA changes in the uninjured afferents may underlie the development and maintenance of neuropathic pain. TargetScan was used to predict mRNA targets for these miRNAs and it was found that the transcripts with multiple predicted target sites belong to neurologically important pathways. By employing different bioinformatic approaches we identified neurite remodeling as a significantly regulated biological pathway, and some of these predictions were confirmed by siRNA knockdown for genes that regulate neurite growth in differentiated Neuro2A cells. In vitro validation for predicted target sites in the 3′-UTR of voltage-gated sodium channel Scn11a, alpha 2/delta1 subunit of voltage-dependent Ca-channel, and purinergic receptor P2rx ligand-gated ion channel 4 using luciferase reporter assays showed that identified miRNAs modulated gene expression significantly. Our results suggest the potential for miRNAs to play a direct role in neuropathic pain

    Pheromone-sensing neurons regulate peripheral lipid metabolism in <i>Caenorhabditis elegans</i>

    Get PDF
    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels

    SmCL3, a Gastrodermal Cysteine Protease of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Parasitic infection caused by blood flukes of the genus Schistosoma is a major global health problem. More than 200 million people are infected. Identifying and characterizing the constituent enzymes of the parasite's biochemical pathways should reveal opportunities for developing new therapies (i.e., vaccines, drugs). Schistosomes feed on host blood, and a number of proteolytic enzymes (proteases) contribute to this process. We have identified and characterized a new protease, SmCL3 (for Schistosoma mansoni cathepsin L3), that is found within the gut tissue of the parasite. We have employed various biochemical and molecular biological methods and sequence similarity analyses to characterize SmCL3 and obtain insights into its possible functions in the parasite, as well as its evolutionary position among cathepsin L proteases in general. SmCL3 hydrolyzes major host blood proteins (serum albumin and hemoglobin) and is expressed in parasite life stages infecting the mammalian host. Enzyme substrate specificity detected by positional scanning-synthetic combinatorial library was confirmed by molecular modeling. A sequence analysis placed SmCL3 to the cluster of other cathepsins L in accordance with previous phylogenetic analyses
    corecore