400 research outputs found

    Does prior acute exercise affect postexercise substrate oxidation in response to a high carbohydrate meal?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consumption of a mixed meal increases postprandial carbohydrate utilization and decreases fat oxidation. On the other hand, acute endurance exercise increases fat oxidation and decreases carbohydrate utilization during the post-exercise recovery period. It is possible that the resulting post-exercise increase in circulating nonesterified fatty acids could attenuate the ability of ingested carbohydrate to inhibit lipid oxidation. The purpose of this study was to determine whether prior exercise attenuates the usual meal-induced decline in lipid oxidation.</p> <p>Methods</p> <p>Six healthy, physically active young subjects (x age = 26.3 years, 4 males, 2 females) completed three treatments in random order after a ~10 h fast: (a) Exercise/Carbohydrate (Ex/CHO) – subjects completed a bout of exercise at 70% VO<sub>2peak </sub>(targeted net energy cost of 400 kcals), followed by consumption of a carbohydrate-rich meal; (b) Exercise/Placebo (Ex/Placebo) – subjects completed an identical bout of exercise followed by consumption of a placebo; and (c) No Exercise/Carbohydrate (NoEx/CHO) – subjects sat quietly rather than exercising and then consumed the carbohydrate-rich meal. Blood samples were obtained before and during the postprandial period to determine plasma glucose, insulin, and non-esterified fatty acids (NEFA). Respiratory gas exchange measures were used to estimate rates of fat and carbohydrate oxidation.</p> <p>Results</p> <p>Plasma NEFA were approximately two-fold higher immediately following the two exercise conditions compared to the no-exercise condition, while meal consumption significantly increased insulin and glucose in both Ex/CHO and NoEx/CHO. NEFA concentrations fell rapidly during the 2-h postprandial period, but remained higher compared to the NoEx/CHO treatment. Carbohydrate oxidation increased rapidly and fat oxidation decreased in response to the meal, with no differences in the rates of carbohydrate and fat oxidation during recovery between the Ex/CHO and NoEx/CHO conditions.</p> <p>Conclusion</p> <p>The plasma NEFA concentration is increased during the post exercise period, which is associated with elevated fat oxidation when no meal is consumed. However, when a mixed meal is consumed immediately following exercise, the initially elevated plasma NEFA concentration decreases rapidly, and postexercise fat oxidation during this 2-h postexercise, postprandial period is no higher than that of the 2-h postprandial period without prior exercise.</p

    The diagnostic value of liver biopsy

    Get PDF
    BACKGROUND: Since the introduction of molecular diagnostic tools such as markers for hepatitis C and different autoimmune diseases, liver biopsy is thought to be useful mainly for staging but not for diagnostic purposes. The aim was to review the liver biopsies for 5 years after introduction of testing for hepatitis C, in order to evaluate what diagnostic insights – if any – remain after serologic testing. METHODS: Retrospective review of all liver biopsies performed between 1.1.1995 and 31.12.1999 at an academic outpatient hepatology department. The diagnoses suspected in the biopsy note were compared with the final diagnosis arrived at during a joint meeting with the responsible clinicians and a hepatopathologist. RESULTS: In 365 patients, 411 diagnoses were carried out before biopsy. 84.4 % were confirmed by biopsy but in 8.8 %, 6.8 % and 10.5 % the diagnosis was specified, changed or a diagnosis added, respectively. Additional diagnoses of clinical relevance were unrecognized biliary obstruction and additional alcoholic liver disease in patients with chronic hepatitis C. Liver biopsy led to change in management for 12.1 % of patients. CONCLUSION: Even in the era of advanced virological, immunological and molecular genetic testing, liver biopsy remains a useful diagnostic tool. The yield is particularly high in marker negative patients but also in patients with a clear-cut prebiopsy diagnosis, liver biopsy can lead to changes in patient management

    Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns.</p> <p>Method</p> <p>We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period.</p> <p>Results</p> <p>As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession.</p> <p>Conclusions</p> <p>This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.</p

    Prediction of melanoma metastasis by the Shields index based on lymphatic vessel density

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma usually presents as an initial skin lesion without evidence of metastasis. A significant proportion of patients develop subsequent local, regional or distant metastasis, sometimes many years after the initial lesion was removed. The current most effective staging method to identify early regional metastasis is sentinel lymph node biopsy (SLNB), which is invasive, not without morbidity and, while improving staging, may not improve overall survival. Lymphatic density, Breslow's thickness and the presence or absence of lymphatic invasion combined has been proposed to be a prognostic index of metastasis, by Shields et al in a patient group.</p> <p>Methods</p> <p>Here we undertook a retrospective analysis of 102 malignant melanomas from patients with more than five years follow-up to evaluate the Shields' index and compare with existing indicators.</p> <p>Results</p> <p>The Shields' index accurately predicted outcome in 90% of patients with metastases and 84% without metastases. For these, the Shields index was more predictive than thickness or lymphatic density. Alternate lymphatic measurement (hot spot analysis) was also effective when combined into the Shields index in a cohort of 24 patients.</p> <p>Conclusions</p> <p>These results show the Shields index, a non-invasive analysis based on immunohistochemistry of lymphatics surrounding primary lesions that can accurately predict outcome, is a simple, useful prognostic tool in malignant melanoma.</p

    Decrease in alarm call response among tufted capuchins in competitive feeding contexts: possible evidence for counterdeception

    Get PDF
    Animal signals function to elicit behaviors in receivers that ultimately benefit the signaler, while receivers should respond in a way that maximizes their own fitness. However, the best response may be difficult for receivers to determine when unreliable signaling is common. “Deceptive” alarm calling is common among tufted capuchins (Cebus apella nigritus) in competitive feeding contexts, and responding to these calls is costly. Receivers should thus vary their responses based on whether a call is likely to be reliable. If capuchins are indeed able to assess reliability, I predicted that receivers will be less likely to respond to alarms that are given during competitive feeding contexts than in noncompetitive contexts, and, within feeding contexts, that individuals inside or adjacent to a food patch will be less likely to respond to alarms than those further from the resource. I tested these predictions in a group of wild capuchins by observing the reactions of focal animals to alarm calls in both noncompetitive contexts and experimental feeding contexts. Antipredator escape reactions, but not vigilance reactions, occurred significantly less often in competitive feeding contexts than in noncompetitive contexts and individuals adjacent to food patches were more likely to respond to alarm calls than were those inside or further from food patches. Although not all predictions were fully supported, the findings demonstrate that receivers vary their behavior in a way that minimizes the costs associated with “deceptive” alarms, but further research is needed to determine whether or not this can be attributed to counterdeception

    HIV Traffics through a Specialized, Surface-Accessible Intracellular Compartment during trans-Infection of T Cells by Mature Dendritic Cells

    Get PDF
    In vitro, dendritic cells (DCs) bind and transfer intact, infectious HIV to CD4 T cells without first becoming infected, a process known as trans-infection. trans-infection is accomplished by recruitment of HIV and its receptors to the site of DC–T cell contact and transfer of virions at a structure known as the infectious synapse. In this study, we used fluorescent microscopy to track individual HIV particles trafficking in DCs during virus uptake and trans-infection. Mature DCs rapidly concentrated HIV into an apparently intracellular compartment that lacked markers characteristic of early endosomes, lysosomes, or antigen-processing vesicles. Live cell microscopy demonstrated that the HIV-containing compartment was rapidly polarized toward the infectious synapse after contact with a T cell; however, the bulk of the concentrated virus remained in the DCs after T cell engagement. Individual virions were observed emerging from the compartment and fusing with the T cell membrane at the infectious synapse. The compartmentalized HIV, although engulfed by the cytoplasm, was fully accessible to HIV envelope-specific inhibitors and other membrane-impermeable probes that were delivered to the cell surface. These results demonstrate that HIV resides in an invaginated domain within DCs that is both contiguous with the plasma membrane and distinct from endocytic vesicles. We conclude that HIV virions are routed through this specialized compartment, which allows individual particles to be delivered to T cells during trans-infection

    Robustness and Stability of the Gene Regulatory Network Involved in DV Boundary Formation in the Drosophila Wing

    Get PDF
    Gene regulatory networks have been conserved during evolution. The Drosophila wing and the vertebrate hindbrain share the gene network involved in the establishment of the boundary between dorsal and ventral compartments in the wing and adjacent rhombomeres in the hindbrain. A positive feedback-loop between boundary and non-boundary cells and mediated by the activities of Notch and Wingless/Wnt-1 leads to the establishment of a Notch dependent organizer at the boundary. By means of a Systems Biology approach that combines mathematical modeling and both in silico and in vivo experiments in the Drosophila wing primordium, we modeled and tested this regulatory network and present evidence that a novel property, namely refractoriness to the Wingless signaling molecule, is required in boundary cells for the formation of a stable dorsal-ventral boundary. This new property has been validated in vivo, promotes mutually exclusive domains of Notch and Wingless activities and confers stability to the dorsal-ventral boundary. A robustness analysis of the regulatory network complements our results and ensures its biological plausibility

    Noise Pollution Filters Bird Communities Based on Vocal Frequency

    Get PDF
    BACKGROUND: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. METHODOLOGY/PRINCIPAL FINDINGS: Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel acoustics
    corecore