129 research outputs found

    Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families

    Get PDF
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4Γ—10βˆ’6 (serial isolates) to 4.5Γ—10βˆ’6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    Prediction of Extracellular Proteases of the Human Pathogen Helicobacter pylori Reveals Proteolytic Activity of the Hp1018/19 Protein HtrA

    Get PDF
    Exported proteases of Helicobacter pylori (H. pylori) are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI). Among these, we found the predicted serine protease HtrA (Hp1019), which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies

    Using Macro-Arrays to Study Routes of Infection of Helicobacter pylori in Three Families

    Get PDF
    allowed tracing the spread of infection through populations on different continents but transmission pathways between individual humans have not been clearly described.To investigate person-to-person transmission, we studied three families each including one child with persistence of symptoms after antibiotic treatment. Ten isolates from the antrum and corpus of stomach of each family member were analyzed both by sequencing of two housekeeping genes and macroarray tests. from outside the family appeared to be probable in the transmission pathways. infection may be acquired by more diverse routes than previously expected

    Efficiency of Purine Utilization by Helicobacter pylori: Roles for Adenosine Deaminase and a NupC Homolog

    Get PDF
    The ability to synthesize and salvage purines is crucial for colonization by a variety of human bacterial pathogens. Helicobacter pylori colonizes the gastric epithelium of humans, yet its specific purine requirements are poorly understood, and the transport mechanisms underlying purine uptake remain unknown. Using a fully defined synthetic growth medium, we determined that H. pylori 26695 possesses a complete salvage pathway that allows for growth on any biological purine nucleobase or nucleoside with the exception of xanthosine. Doubling times in this medium varied between 7 and 14 hours depending on the purine source, with hypoxanthine, inosine and adenosine representing the purines utilized most efficiently for growth. The ability to grow on adenine or adenosine was studied using enzyme assays, revealing deamination of adenosine but not adenine by H. pylori 26695 cell lysates. Using mutant analysis we show that a strain lacking the gene encoding a NupC homolog (HP1180) was growth-retarded in a defined medium supplemented with certain purines. This strain was attenuated for uptake of radiolabeled adenosine, guanosine, and inosine, showing a role for this transporter in uptake of purine nucleosides. Deletion of the GMP biosynthesis gene guaA had no discernible effect on mouse stomach colonization, in contrast to findings in numerous bacterial pathogens. In this study we define a more comprehensive model for purine acquisition and salvage in H. pylori that includes purine uptake by a NupC homolog and catabolism of adenosine via adenosine deaminase

    A Single Nucleotide Change Affects Fur-Dependent Regulation of sodB in H. pylori

    Get PDF
    Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB) is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur) in the absence of iron (apo-Fur regulation) [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter

    Three-Dimensional Structure of N-Terminal Domain of DnaB Helicase and Helicase-Primase Interactions in Helicobacter pylori

    Get PDF
    Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 Γ… resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria

    Natural Transformation of Helicobacter pylori Involves the Integration of Short DNA Fragments Interrupted by Gaps of Variable Size

    Get PDF
    Helicobacter pylori are gram-negative bacteria notable for their high level of genetic diversity and plasticity, features that may play a key role in the organism's ability to colonize the human stomach. Homeologous natural transformation, a key contributor to genomic diversification, has been well-described for H. pylori. To examine the mechanisms involved, we performed restriction analysis and sequencing of recombination products to characterize the length, fragmentation, and position of DNA imported via natural transformation. Our analysis revealed DNA imports of small size (1,300 bp, 95% confidence limits 950–1850 bp) with instances of substantial asymmetry in relation to selectable antibiotic-resistance markers. We also observed clustering of imported DNA endpoints, suggesting a possible role for restriction endonucleases in limiting recombination length. Additionally, we observed gaps in integrated DNA and found evidence suggesting that these gaps are the result of two or more separate strand invasions. Taken together, these observations support a system of highly efficient short-fragment recombination involving multiple recombination events within a single locus

    CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes

    Get PDF
    BACKGROUND: The recent accumulation of closely related genomic sequences provides a valuable resource for the elucidation of the evolutionary histories of various organisms. However, although numerous alignment calculation and visualization tools have been developed to date, the analysis of complex genomic changes, such as large insertions, deletions, inversions, translocations and duplications, still presents certain difficulties. RESULTS: We have developed a comparative genome analysis tool, named CGAT, which allows detailed comparisons of closely related bacteria-sized genomes mainly through visualizing middle-to-large-scale changes to infer underlying mechanisms. CGAT displays precomputed pairwise genome alignments on both dotplot and alignment viewers with scrolling and zooming functions, and allows users to move along the pre-identified orthologous alignments. Users can place several types of information on this alignment, such as the presence of tandem repeats or interspersed repetitive sequences and changes in G+C contents or codon usage bias, thereby facilitating the interpretation of the observed genomic changes. In addition to displaying precomputed alignments, the viewer can dynamically calculate the alignments between specified regions; this feature is especially useful for examining the alignment boundaries, as these boundaries are often obscure and can vary between programs. Besides the alignment browser functionalities, CGAT also contains an alignment data construction module, which contains various procedures that are commonly used for pre- and post-processing for large-scale alignment calculation, such as the split-and-merge protocol for calculating long alignments, chaining adjacent alignments, and ortholog identification. Indeed, CGAT provides a general framework for the calculation of genome-scale alignments using various existing programs as alignment engines, which allows users to compare the outputs of different alignment programs. Earlier versions of this program have been used successfully in our research to infer the evolutionary history of apparently complex genome changes between closely related eubacteria and archaea. CONCLUSION: CGAT is a practical tool for analyzing complex genomic changes between closely related genomes using existing alignment programs and other sequence analysis tools combined with extensive manual inspection

    DNA Damage Triggers Genetic Exchange in Helicobacter pylori

    Get PDF
    Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-assortment of preexisting alleles in this important human pathogen
    • …
    corecore