82 research outputs found

    Gene Expression Profiles of Sporadic Canine Hemangiosarcoma Are Uniquely Associated with Breed

    Get PDF
    The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma). Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds). Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors

    The Prognostic Role of RASSF1A Promoter Methylation in Breast Cancer: A Meta-Analysis of Published Data

    Get PDF
    promoter methylation status and both disease free survival (DFS) and overall survival (OS) in female breast cancer.Eligible studies were identified through searching the PubMed, Web of Science and Embase databases. Studies were pooled and summary hazard ratios (HR) with corresponding confidence intervals (CIs) were calculated. Funnel plots were also carried out to evaluate publication bias. promoter methylation status with OS in 1439 patients. The hazard estimates ranged from 1.21–6.90 with a combined random-effects estimates of 3.47 (95%CI 1.44–8.34). OS reported in multivariate analysis was evaluated in four series comprising 1346 cases and the summarized random-effects HR estimate was 3.35 (95%CI 1.14–9.85). Additionally, no publication bias was detected for both OS and DFS. promoter methylation

    Common Variants of Inflammatory Cytokine Genes Are Associated with Risk of Nephropathy in Type 2 Diabetes among Asian Indians

    Get PDF
    BACKGROUND: Inflammatory cytokine genes have been proposed as good candidate genes for conferring susceptibility to diabetic nephropathy. In the present study, we examined the combined effect of multiple alleles of pro inflammatory cytokine genes for determining the risk of nephropathy in type 2 diabetic patients. METHODOLOGY/PRINCIPAL FINDINGS: Eight single nucleotide polymorphisms (SNPs) of pro-inflammatory cytokine genes (CCL2, TGFB1, IL8, CCR5, and MMP9) were genotyped in two independently ascertained type 2 diabetic cohorts with (DN) and without nephropathy (DM); consisting of patients from North India (n = 495) and South India (n = 188). Genotyping was carried out using PCR, allele specific oligonucleotide-PCR (ASO-PCR), PCR-RFLP and TaqMan allelic discrimination assays and the gene-gene interaction among genetic variants were determined by multi dimensional reduction (MDR) software. Serum high sensitive CRP (hs-CRP) levels were measured by ELISA. The hs-CRP levels were significantly higher in DN as compared to the DM group (p<0.05). The CCL2, IL8, CCR5 and MMP9 polymorphisms were found to be associated with the risk of diabetic nephropathy. Frequency of CCL2 II, IL8 -251AA, CCR5 59029AA and MMP9 279Gln/Gln genotypes were significantly higher in DN than in DM group (p<0.05) and associated with an increased risk of nephropathy in both North and South Indian cohorts. CCR5 DD and IL8 -251AA genotypes were more prevalent in North Indian DN group only. The co-occurrence of risk associated genotypes (II, -2518GG (CCL2), DD (CCR5) and 279Gln/Gln (MMP9) conferred a tenfold increased risk of nephropathy among type 2 diabetics (p<0.0002). CONCLUSION: The present study highlights that common variants of inflammatory cytokine genes exert a modest effect on risk of DN and a combination of risk alleles confer a substantial increased risk of nephropathy in type 2 diabetes among Asian Indians

    Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes

    Get PDF
    Background: Recent advances in whole-genome association studies (WGASs) for human cancer risk are beginning to provide the part lists of low-penetrance susceptibility genes. However, statistical analysis in these studies is complicated by the vast number of genetic variants examined and the weak effects observed, as a result of which constraints must be incorporated into the study design and analytical approach. In this scenario, biological attributes beyond the adjusted statistics generally receive little attention and, more importantly, the fundamental biological characteristics of low-penetrance susceptibility genes have yet to be determined. Methods: We applied an integrative approach for identifying candidate low-penetrance breast cancer susceptibility genes, their characteristics and molecular networks through the analysis of diverse sources of biological evidence. Results: First, examination of the distribution of Gene Ontology terms in ordered WGAS results identified asymmetrical distribution of Cell Communication and Cell Death processes linked to risk. Second, analysis of 11 different types of molecular or functional relationships in genomic and proteomic data sets defined the 'omic' properties of candidate genes: i/ differential expression in tumors relative to normal tissue; ii/ somatic genomic copy number changes correlating with gene expression levels; iii/ differentially expressed across age at diagnosis; and iv/ expression changes after BRCA1 perturbation. Finally, network modeling of the effects of variants on germline gene expression showed higher connectivity than expected by chance between novel candidates and with known susceptibility genes, which supports functional relationships and provides mechanistic hypotheses of risk. Conclusion: This study proposes that cell communication and cell death are major biological processes perturbed in risk of breast cancer conferred by low-penetrance variants, and defines the common omic properties, molecular interactions and possible functional effects of candidate genes and proteins

    A Genome-Wide Study of Cytogenetic Changes in Colorectal Cancer Using SNP Microarrays: Opportunities for Future Personalized Treatment

    Get PDF
    In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF) - a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment

    In Silico Whole Genome Association Scan for Murine Prepulse Inhibition

    Get PDF
    Background The complex trait of prepulse inhibition (PPI) is a sensory gating measure related to schizophrenia and can be measured in mice. Large-scale public repositories of inbred mouse strain genotypes and phenotypes such as PPI can be used to detect Quantitative Trait Loci (QTLs) in silico. However, the method has been criticized for issues including insufficient number of strains, not controlling for false discoveries, the complex haplotype structure of inbred mice, and failing to account for genotypic and phenotypic subgroups. Methodology/Principal Findings We have implemented a method that addresses these issues by incorporating phylogenetic analyses, multilevel regression with mixed effects, and false discovery rate (FDR) control. A genome-wide scan for PPI was conducted using over 17,000 single nucleotide polymorphisms (SNPs) in 37 strains phenotyped. Eighty-nine SNPs were significant at a false discovery rate (FDR) of 5%. After accounting for long-range linkage disequilibrium, we found 3 independent QTLs located on murine chromosomes 1 and 13. One of the PPI positives corresponds to a region of human chromosome 6p which includes DTNBP1, a gene implicated in schizophrenia. Another region includes the gene Tsn which alters PPI when knocked out. These genes also appear to have correlated expression with PPI. Conclusions/Significance These results support the usefulness of using an improved in silico mapping method to identify QTLs for complex traits such as PPI which can be then be used for to help identify loci influencing schizophrenia in humans

    Control of Flowering and Cell Fate by LIF2, an RNA Binding Partner of the Polycomb Complex Component LHP1

    Get PDF
    Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation
    • …
    corecore