79 research outputs found

    Influence of focus of attention, reinvestment and fall history on elderly gait stability

    Get PDF
    Falls represent a substantial risk in the elderly. Previous studies have found that a focus on the outcome or effect of the movement (external focus of attention) leads to improved balance performance, whereas a focus on the movement execution itself (internal focus of attention) impairs balance performance in elderly. A shift toward more conscious, explicit forms of motor control occurs when existing declarative knowledge is recruited in motor control, a phenomenon called reinvestment. We investigated the effects of attentional focus and reinvestment on gait stability in elderly fallers and nonfallers. Full body kinematics was collected from twenty-eight healthy older adults walking on a treadmill, while focus of attention was manipulated through instruction. Participants also filled out the Movement Specific Reinvestment Scale (MSRS) and the Falls Efficacy Scale International (FES-I), and provided details about their fall history. Coefficients of Variation (CV) of spatiotemporal gait parameters and Local Divergence Exponents (LDE) were calculated as measures of gait variability and gait stability, respectively. Larger stance time CV and LDE (decreased gait stability) were found for fallers compared to nonfallers. No significant effect of attentional focus was found for the gait parameters, and no significant relation between MSRS score (reinvestment) and fall history was found. We conclude that external attention to the walking surface does not lead to improved gait stability in elderly. Potential benefits of an external focus of attention might not apply to gait, because walking movements are not geared toward achieving a distinct environmental effect

    Effects of attentional focus on walking stability in elderly.

    Get PDF
    Balance performance in the elderly is related to psychological factors such as attentional focus. We investigated the effects of internal vs. external focus of attention and fall history on walking stability in healthy older adults.Walking stability of twenty-eight healthy older adults was assessed by applying random unilateral decelerations on a split-belt treadmill and analysing the resulting balance recovery movements. The internal focus instruction was: concentrate on the movement of your legs, whereas the external focus instruction was: concentrate on the movement of the treadmill. In both conditions participants were asked to look ahead at a screen. Outcome measures were coefficient of variation of step length and step width, and characteristics of the centre of mass velocity time-series as analysed using statistical parametric mapping. Fall history was assessed using a questionnaire.After each perturbation participants required two to three strides to regain a normal gait pattern, as determined by the centre of mass velocity response. No effects were found of internal and external focus of attention instructions and fall history on any of the outcome measures.We conclude that, compared to an internal focus of attention instruction, external focus to the walking surface does not lead to improved balance recovery responses to gait perturbations in the elderly

    Effects of affective picture viewing on postural control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion.</p> <p>Results</p> <p>The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics.</p> <p>Conclusion</p> <p>Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and the neural control of behavior.</p

    Posture as Index for Approach-Avoidance Behavior

    Get PDF
    Approach and avoidance are two behavioral responses that make people tend to approach positive and avoid negative situations. This study examines whether postural behavior is influenced by the affective state of pictures. While standing on the Wiiâ„¢ Balance Board, participants viewed pleasant, neutral, and unpleasant pictures (passively viewing phase). Then they had to move their body to the left or the right (lateral movement phase) to make the next picture appear. We recorded movements in the anterior-posterior direction to examine approach and avoidant behavior. During passively viewing, people approached pleasant pictures. They avoided unpleasant ones while they made a lateral movement. These findings provide support for the idea that we tend to approach positive and avoid negative situations

    Contribution of Each Leg to the Control of Unperturbed Bipedal Stance in Lower Limb Amputees: New Insights Using Entropy

    Get PDF
    The present study was designed to assess the relative contribution of each leg to unperturbed bipedal posture in lower limb amputees. To achieve this goal, eight unilateral traumatic trans-femoral amputees (TFA) were asked to stand as still as possible on a plantar pressure data acquisition system with their eyes closed. Four dependent variables were computed to describe the subject's postural behavior: (1) body weight distribution, (2) amplitude, (3) velocity and (4) regularity of centre of foot pressure (CoP) trajectories under the amputated (A) leg and the non-amputated (NA) leg. Results showed a larger body weight distribution applied to the NA leg than to the A leg and a more regular CoP profiles (lower sample entropy values) with greater amplitude and velocity under the NA leg than under the A leg. Taken together, these findings suggest that the NA leg and the A leg do not equally contribute to the control of unperturbed bipedal posture in TFA. The observation that TFA do actively control unperturbed bipedal posture with their NA leg could be viewed as an adaptive process to the loss of the lower leg afferents and efferents because of the unilateral lower-limb amputation. From a methodological point of view, these results demonstrate the suitability of computing bilateral CoP trajectories regularity for the assessment of lateralized postural control under pathological conditions

    Examining links between anxiety, reinvestment and walking when talking by older adults during adaptive gait

    Get PDF
    Falls by older adults often result in reduced quality of life and debilitating fear of further falls. Stopping walking when talking (SWWT) is a significant predictor of future falls by older adults and is thought to reflect age-related increases in attentional demands of walking. We examine whether SWWT is associated with use of explicit movement cues during locomotion, and evaluate if conscious control (i.e., movement specific reinvestment) is causally linked to falls-related anxiety during a complex walking task. We observed whether twenty-four older adults stopped walking when talking when asked a question during an adaptive gait task. After certain trials, participants completed a visual-spatial recall task regarding walkway features, or answered questions about their movements during the walk. In a subsequent experimental condition, participants completed the walking task under conditions of raised postural threat. Compared to a control group, participants who SWWT reported higher scores for aspects of reinvestment relating to conscious motor processing but not movement self-consciousness. The higher scores for conscious motor processing were preserved when scores representing cognitive function were included as a covariate. There were no group differences in measures of general cognitive function, visual spatial working memory or balance confidence. However, the SWWT group reported higher scores on a test of external awareness when walking, indicating allocation of attention away from task-relevant environmental features. Under conditions of increased threat, participants self-reported significantly greater state anxiety and reinvestment and displayed more accurate responses about their movements during the task. SWWT is not associated solely with age-related cognitive decline or generic increases in age-related attentional demands of walking. SWWT may be caused by competition for phonological resources of working memory associated with consciously processing motor actions and appears to be causally linked with fall-related anxiety and increased vigilance.This research was supported by The Royal Society (IE131576) and British Academy (SG132820)

    What is ‘anti’ about anti-reaches? Reference frames selectively affect reaction times and endpoint variability

    Get PDF
    Reach movement planning involves the representation of spatial target information in different reference frames. Neurons at parietal and premotor stages of the cortical sensorimotor system represent target information in eye- or hand-centered reference frames, respectively. How the different neuronal representations affect behavioral parameters of motor planning and control, i.e. which stage of neural representation is relevant for which aspect of behavior, is not obvious from the physiology. Here, we test with a behavioral experiment if different kinematic movement parameters are affected to a different degree by either an eye- or hand-reference frame. We used a generalized anti-reach task to test the influence of stimulus-response compatibility (SRC) in eye- and hand-reference frames on reach reaction times, movement times, and endpoint variability. While in a standard anti-reach task, the SRC is identical in the eye- and hand-reference frames, we could separate SRC for the two reference frames. We found that reaction times were influenced by the SRC in eye- and hand-reference frame. In contrast, movement times were only influenced by the SRC in hand-reference frame, and endpoint variability was only influenced by the SRC in eye-reference frame. Since movement time and endpoint variability are the result of planning and control processes, while reaction times are consequences of only the planning process, we suggest that SRC effects on reaction times are highly suited to investigate reference frames of movement planning, and that eye- and hand-reference frames have distinct effects on different phases of motor action and different kinematic movement parameters

    The Brentano illusion influences goal-directed movements of the left and right hand to the same extent

    Get PDF
    Recently, Gonzalez et al. (J Neurophys 95:3496-3501, 2006) reported that movements with the left hand are more susceptible to visual size illusions than are those with the right hand. We hypothesized that this might be because proprioceptive information about the position of the left hand is less precise. If so, the difference between the hands should become clearer when vision of the hand is removed so that subjects can only rely on proprioception to locate their hand. We tested whether this was so by letting right-handed subjects make open-loop pointing movements within an illusory context with and without vision of their hand. On average, the illusion influenced the left and the right hand to the same extent, irrespective of the visibility of the hand. There were some systematic differences between the hands within certain regions of space, but these were not consistent across subjects. We conclude that there is no fundamental difference between the hands in susceptibility to the Brentano illusion
    • …
    corecore