1,029 research outputs found

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    Full text link
    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analog quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles . Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pair-wise quantum correlations to observe the monogamy of entanglement

    Fulvestrant and the sequential endocrine cascade for advanced breast cancer

    Get PDF
    Following relapse on endocrine therapy for advanced, hormone receptor-positive breast cancer, it is common for patients to experience responses to alternative endocrine agents. Fulvestrant (β€˜Faslodex’) is a new type of endocrine treatment – an oestrogen receptor (ER) antagonist with no agonist effects. Fulvestrant downregulates cellular levels of the ER resulting in decreased expression of the progesterone receptor. This unique mode of action means that it is important that fulvestrant is placed optimally within the sequence of endocrine therapies to ensure that patients gain maximum benefit. Fulvestrant has shown efficacy when used after progression on tamoxifen or anastrozole in postmenopausal women with advanced breast cancer. After progression on fulvestrant, subsequent endocrine treatments can produce responses in many patients, demonstrating that fulvestrant does not lead to crossresistance with other endocrine therapies. Responses to fulvestrant have also been observed in patients heavily pretreated with prior endocrine therapy. Fulvestrant is a versatile endocrine agent that may be integrated into the therapeutic sequence prior to, or subsequent to, other hormonal therapies, and represents a valuable additional antioestrogen for the treatment of postmenopausal women with advanced breast cancer

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    Fulvestrant is an effective and well-tolerated endocrine therapy for postmenopausal women with advanced breast cancer: results from clinical trials

    Get PDF
    Fulvestrant (β€˜Faslodex’) is a new type of endocrine treatment – an oestrogen receptor (ER) antagonist that downregulates the ER and has no agonist effects. Early efficacy data from phase I/II trials have demonstrated fulvestrant to be effective and well tolerated. Two randomised phase III trials have compared the efficacy of fulvestrant and the aromatase inhibitor, anastrozole, in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy. Fulvestrant (intramuscular injection 250 mg monthβˆ’1) was found to be at least as effective as anastrozole (orally 1 mg dayβˆ’1) for time to progression (5.5 vs 4.1 months, respectively (hazard ratio (HR): 0.95; 95.14% confidence interval (CI), 0.82–1.10; P=0.48)) and objective response 19.2 vs 16.5%, respectively; treatment difference 2.75%; 95.14% CI, βˆ’2.27 to 9.05%; P=0.31). More recently, fulvestrant has also been shown to be noninferior to anastrozole in terms of overall survival, with median time to death being 26.4 months in fulvestrant-treated patients and 24.2 months in those treated with anastrozole (HR: 0.97; 95% CI, 0.78–1.21; P=0.82). In a further randomised phase III trial, fulvestrant was compared with tamoxifen as first-line therapy for advanced disease in postmenopausal women. In the overall population, efficacy differences favoured tamoxifen and noninferiority of fulvestrant could not be ruled out. In the prospectively defined subset of patients with ER-positive and/or progesterone receptor-positive disease, there was no statistically significant difference between fulvestrant and tamoxifen. This paper reviews the efficacy and tolerability results from these trials

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Prognostic value of monitoring tumour markers CA 15-3 and CEA during fulvestrant treatment

    Get PDF
    BACKGROUND: At many centres tumour markers are used to detect disease recurrence and to monitor response to therapy in patients with advanced disease, although the real value of serial observation of marker levels remains disputed. In this study, we evaluated the prognostic value of tumour markers for predicting response (partial response [PR], stable disease [SD] β‰₯ 6 months), de novo disease progression (PD) and secondary PD in patients receiving fulvestrant ('Faslodex') 250 mg/month for the treatment of metastatic breast cancer (MBC). METHODS: Changes in cancer antigen 15–3 (CA 15-3) and carcinoembryonic antigen (CEA) were prospectively monitored (monthly) and were also evaluated for the 3 months preceding secondary PD. Data from 67 patients with previously treated MBC participating in a Compassionate Use Programme were analysed. RESULTS: In patients with a PR (n = 7 [10.4%]), a non-significant increase in CA 15-3 occurred during the first 6 months of treatment; CEA was significantly reduced (P = 0.0165). In patients with SD β‰₯ 6 months (n = 28 [41.8%]), both CA 15-3 (P < 0.0001) and CEA (P = 0.0399) levels increased significantly after 6 months treatment. In those experiencing de novo PD (n = 32 [47.8%]), CA 15-3 increased significantly (P < 0.0001) after 4 months; CEA also increased significantly (P = 0.0002) during the same time period. Both CA 15-3 (P < 0.0001) and CEA (P < 0.0001) increased significantly in the 3 months preceding secondary PD. CONCLUSION: CA 15-3 increases in patients progressing on fulvestrant but may also increase in those experiencing clinical benefit; this should not be taken as a sign of PD without verification. Overall, both CA 15-3 and CEA appear to be poor prognostic markers for determining progression in patients receiving fulvestrant
    • …
    corecore