49 research outputs found

    Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.

    Get PDF
    Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics

    Vitamin food fortification today

    Get PDF
    Historically, food fortification has served as a tool to address population-wide nutrient deficiencies such as rickets by vitamin D fortified milk. This article discusses the different policy strategies to be used today. Mandatory or voluntary fortification and fortified foods, which the consumer needs, also have to comply with nutritional, regulatory, food safety and technical issues. The ‘worldwide map of vitamin fortification’ is analysed, including differences between develop and developing countries. The vitamins, folate and vitamin D, are taken as practical examples in the review of the beneficial effect of different strategies on public health. The importance of the risk–benefit aspect, as well as how to identify the risk groups, and the food vehicles for fortification is discussed

    Forest biodiversity, ecosystem functioning and the provision of ecosystem services

    Get PDF
    Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services

    Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Products

    Full text link
    This work has examined the influence of ultrasonic-assisted air-drying on the dehydration of apple (Malus domestica L. var Royal Gala) and its influence in the availability of vitamins A, B1, B2, B3, B5, B6, and E of the dried product. This study also has estimated the effective water diffusivity in air-drying process subjected to ultrasonic waves. The water effective diffusivity increased by up to 79 % by ultrasound application, which caused a reduction of about 35 % in the total drying time compared to the air-drying without sonication. The application of ultrasound increased the availability of vitamins B1, B2, B3, and B6 in the dried product. A loss of vitamins B5 and E were observed for all studied drying conditions.The authors thank the financial support of the Brazilian funding agency CNPq and the Spanish Ministerio de Economia y Competitividad and FEDER (Ref. DPI2013-37466-C03-03).Fernandes, FA.; Rodrigues, S.; Cárcel Carrión, JA.; García Pérez, JV. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Products. Food and Bioprocess Technology. 8(7):1503-1511. https://doi.org/10.1007/s11947-015-1519-7S1503151187Ball, G. F. M. (2006). Vitamins in foods: Analysis, bioavailability, and stability (p. 785). Boca Raton: CRC Press.Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007a). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472–479. doi: 10.1016/j.jfoodeng.2005.10.018 .Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007b). Influence of high intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25, 185–193.Crank, J. (1975). The mathematics of diffusion (2nd ed., p. 414). Glasgow: Oxfort University Press.Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.Farrer, K. T. H. (1955). The thermal destruction of vitamin B1 in foods. Advances in Food Research, 6, 257–311.Fernandes, F. A. N., & Rodrigues, S. (2008). Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26(12), 1509–1516. doi: 10.1080/07373930802412256 .Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049–1054. doi: 10.1016/j.ultsonch.2008.03.009 .Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2010). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185. doi: 10.1007/s11947-010-0323-7 .García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Mulet, A. (2006a). Effect of air temperature on convective drying assisted by high power ultrasound. Defect and Diffusion Forum, 258-260, 563–574.García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006b). Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics, 44(Suppl 1), e539–e543. doi: 10.1016/j.ultras.2006.06.059 .García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27, 281–287.Ghosh, H. P., Sarkar, P. K., & Guha, B. C. (1963). Distribution of the bound form of nicotinic acid in natural materials. The Journal of Nutrition, 79, 451–453.Greenwood, D. A., Kraybill, H. R., Feaster, J. F., & Jackson, J. M. (1944). Vitamin retention in processed meat. Industrial and Engineering Chemistry, 36, 922–927.Gregory, J. F., III. (1985). Chemical changes of vitamins during food processing. In T. Richardson & J. W. Finley (Eds.), Chemical changes in food during processing (pp. 373–408). New York: Van Nostrand Reinhold Company.Gregory, J. F., III, & Hiner, M. (1983). Thermal stability of vitamin B6 compounds in liquid model food systems. Journal of Food Science, 48, 1323–1327.Jedlicka, A., & Klimes, J. (2005). Determination of water- and fat-soluble vitamins in different matrices using high-performance liquid chromatography. Chemical Papers, 59, 202–222.Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495–506. doi: 10.1016/j.fbp.2013.05.003 .Merrill, A. H., Lambeth, J. D., Edmondson, D. E., & McCormick, D. B. (1981). Formation and mode of action of flavoproteins. Annual Review of Nutrition, 1, 281–317.Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113, 427–433. doi: 10.1016/j.jfoodeng.2012.06.013 .Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4(4), 610–615. doi: 10.1007/s11947-010-0351-3 .Ortuño, C., Perez-Munuera, I., Puig, A., Riera, E., & García-Pérez, J. V. (2010). Influence of power ultrasound application on mass transport and microestructure of orange peel during hot air drying. Physics Procedia, 3, 153–159.Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & García-Pérez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21, 1235–1243.Plesovsky-Vig, N. (1999). In M. E. Shils, J. A. Olson, M. Shike, & A. C. Ross (Eds.), Modern nutrition in health and disease (9th ed., p. 423). Philadelphia: Lippincott Williams and Wilkins.Puig, A., Perez-Munuera, I., Cárcel, J. A., Hernando, I., & García-Pérez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90, 624–632.Rizzolo, A., & Polesello, S. (1992). Review Chromatographic determination of vitamins in foods, 624.Rodrigues, S., & Fernandes, F. A. N. (2007). Use of ultrasound as pretreatment for dehydration of melons. Drying Technology, 25(10), 1791–1796. doi: 10.1080/07373930701595409 .Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29. doi: 10.1016/j.jfoodeng.2014.01.001 .Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30, 989–997.Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108, 103–110

    Food folates — a topical review. Stability, physiological relevance, bioavailability, analytical methods of determination, effect of food processing

    No full text
    corecore