54 research outputs found

    Dystocia in Friesian cows and its effects on postpartum reproductive performance and milk production

    Get PDF
    A total of 1,243 records for 585 dairy Friesian cows from 1997–2004 were used to study the factors affecting dystocia and its effects on reproductive performance and milk production. The overall incidence of dystocia was 6.9%. The percentage of dystocia decreased with increasing live body weight, age, and parity of cows (P < 0.05); however, it increased with increasing birth weight of calves (P < 0.05). The highest percentage of dystocia was detected in winter season, but the least percentage was in summer season (P < 0.05). The percentage of incidence of dystocia was significantly (P < 0.05) higher with winter feeding compared to summer ration (8.2% vs. 5.1%). The percentage of incidence of dystocia was significantly (P < 0.05) higher with twinning than single calving (15.5% vs. 6.5%), while not significantly affected by the sex of born calves. Incidence of dystocia had adverse effects on reproductive performance and milk yield. The service interval, service period, days open, and calving interval were significantly (P < 0.05) longer in cows afflicted with dystocia compared to normal cows. The conception rate was lower (P < 0.05), but the number of service per conception was higher (P < 0.05) in cows afflicted with dystocia compared to normal cows (60.5% vs. 73.0% and 3.4 vs. 2.7, respectively). Average daily milk yield was lower (P < 0.05) by 1 kg for cows with incidence of dystocia compared to normal cows

    Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns.</p> <p>Method</p> <p>We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period.</p> <p>Results</p> <p>As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession.</p> <p>Conclusions</p> <p>This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.</p

    Severe loss of mechanical efficiency in COVID‐19 patients

    Get PDF
    Background: There is limited information about the impact of coronavirus disease (COVID-19) on the muscular dysfunction, despite the generalized weakness and fatigue that patients report after overcoming the acute phase of the infection. This study aimed to detect impaired muscle efficiency by evaluating delta efficiency (DE) in patients with COVID-19 compared with subjects with chronic obstructive pulmonary disease (COPD), ischaemic heart disease (IHD), and control group (CG). Methods: A total of 60 participants were assigned to four experimental groups: COVID-19, COPD, IHD, and CG (n = 15 each group). Incremental exercise tests in a cycle ergometer were performed to obtain peak oxygen uptake (VO2 peak). DE was obtained from the end of the first workload to the power output where the respiratory exchange ratio was 1. Results: A lower DE was detected in patients with COVID-19 and COPD compared with those in CG (P ≤ 0.033). However, no significant differences were observed among the experimental groups with diseases (P > 0.05). Lower VO2 peak, peak ventilation, peak power output, and total exercise time were observed in the groups with diseases than in the CG (P < 0.05). A higher VO2 , ventilation, and power output were detected in the CG compared with those in the groups with diseases at the first and second ventilatory threshold (P < 0.05). A higher power output was detected in the IHD group compared with those in the COVID-19 and COPD groups (P < 0.05) at the first and second ventilatory thresholds and when the respiratory exchange ratio was 1. A significant correlation (P < 0.001) was found between the VO2 peak and DE and between the peak power output and DE (P < 0.001). Conclusions: Patients with COVID-19 showed marked mechanical inefficiency similar to that observed in COPD and IHD patients. Patients with COVID-19 and COPD showed a significant decrease in power output compared to IHD during pedalling despite having similar response in VO2 at each intensity. Resistance training should be considered during the early phase of rehabilitation

    Increased masticatory activity and quality of life in elderly persons with dementia-a longitudinal matched cluster randomized single-blind multicenter intervention study.

    Get PDF
    Background: Worldwide, millions of people are suffering from dementia and this number is rising. An index of quality of life (QoL) can describe the impact a disease or treatment has on a person's wellbeing. QoL comprises many variables, including physical health and function, and mental health and function. QoL is related to masticatory ability and physical activity. Animal studies show that disruption of mastication due to loss of teeth or a soft diet leads to memory loss and learning problems. Since these are common complaints in dementia, it is hypothesized that improvement of masticatory function and normalization of diet consistency can increase QoL in elderly persons suffering from dementia. Therefore, the goal of the present study is to examine whether an increase in masticatory activity, achieved by increased food consistency and enhancement of masticatory function through improved oral health care has a positive effect on QoL, including cognition, mood, activities of daily living (ADL), and circadian rhythm in elderly persons with dementia.Methods and design: The described study is a prospective longitudinal matched cluster randomized single-blind multicenter study. Participants are elderly persons living in the Netherlands, suffering from dementia and receiving psychogeriatric care. An intervention group will receive improved oral health care and a diet of increased consistency. A control group receives care as usual. Participants will be assessed four times; outcome variables besides QoL are cognition, mood, independence, rest-activity rhythm, blood pressure, and masticatory function.Discussion: This research protocol investigates the effect of an intervention executed by daily caregivers. The intervention will increase masticatory activity, which is achieved by three different actions, (providing oral health care, increasing food consistency, or a combination of both). There is a certain amount of variety in the nature of the interventions due to local differences in nursing homes. This might be a scientific weakness in the study design; however, a practical implementation of any findings will be subject to the same factors, making this study design clinically relevant.Trial registration: NTR1561. © 2013 Weijenberg et al.; licensee BioMed Central Ltd

    Bacterial Niche-Specific Genome Expansion Is Coupled with Highly Frequent Gene Disruptions in Deep-Sea Sediments

    Get PDF
    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed

    Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation

    Get PDF
    Both the environment and the spatial configuration of habitat patches are important factors that shape community composition and affect species diversity patterns. Species have traits that allow them to respond to their environment. Our current knowledge on environment to species traits relationships is limited in spite of its potential importance for understanding community assembly and ecosystem function. The aim of our study was to examine the relative roles of environmental and spatial variables for the small-scale variation in Collembola (springtail) communities in a Dutch salt marsh. We used a trait-based approach in combination with spatial statistics and variance partitioning, between environmental and spatial variables, to examine the important ecological factors that drive community composition. Turnover of trait diversity across space was lower than for species diversity. Most of the variation in community composition was explained by small-scale spatial variation in topography, on a scale of 4-6 m, most likely because it determines the effect of inundation, which restricts where habitat generalists can persist. There were only small pure spatial effects on species and trait diversity, indicating that biotic interactions or dispersal limitation probably were less important for structuring the community at this scale. Our results suggest that for springtails, life form (i.e. whether they live in the soil or litter or on the surface/in vegetation) is an important and useful trait to understand community assembly. Hence, using traits in addition to species identity when analysing environment-organism relationships results in a better understanding of the factors affecting community composition

    No Adverse Effect of Genetically Modified Antifungal Wheat on Decomposition Dynamics and the Soil Fauna Community – A Field Study

    Get PDF
    The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community

    The impact of early life nutrition and housing on growth and reproduction in dairy cattle

    Get PDF
    Contentious issues in calf rearing include milk feeding practices and single versus group housing. The current study was performed on a high producing 170 Holstein cow dairy farm, to investigate the impact of nutrition and housing on growth and reproduction. Heifer calves (n = 100) were allocated in birth order to one of two commonly used management strategies. All calves received 3-4 litres of dam specific colostrum within 6 hours of birth. Group A calves were group housed from birth and fed milk replacer (MR) ad libitum via a computerised machine utilising a single teat, with weaning commencing at 63 days of age. Group R calves were initially housed in individual pens and received 2.5 litres of MR twice daily via a bucket until 21 days of age when they were group housed and fed 3 litres of MR twice daily via a group trough with weaning commencing at 56 days. From 12 weeks of age onwards, calves in both dietary groups were subject to common nutritional and husbandry protocols. All breeding of heifers was via artificial insemination with no hormonal intervention. Calves were weighed, body condition scored and morphometric measures recorded weekly up till 12 weeks of age then monthly until conception. Pre-weaning growth rates (kg/day) were significantly higher in Group A calves compared to Group R (0.89, 95% CI 0.86-0.93 vs 0.57, 95% CI 0.54-0.6 kg/day P 0.050) in any of the mean values of measured reproductive parameters, multivariable Cox regression suggested that there was a weak trend (P = 0.072) for Group A animals to achieve first service earlier than their Group R counterparts (62.6 weeks versus 65.3 weeks). Irrespective of dietary group, the hazard for achievement of all measured reproductive parameters, apart from time to puberty, was 20-40% less for heifers borne from multiparous dams compared to heifers from primiparous dams
    corecore