152 research outputs found

    Huntington's disease

    Get PDF
    Huntington’s disease is devastating to patients and their families — with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course and combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene which encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confers toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington’s disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype and the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington’s disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials

    Efficacy, Safety, and Tolerability of Three Regimens for Prevention of Malaria: A Randomized, Placebo-Controlled Trial in Ugandan Schoolchildren

    Get PDF
    BACKGROUND: Intermittent preventive treatment (IPT) is a promising malaria control strategy; however, the optimal regimen remains unclear. We conducted a randomized, single-blinded, placebo-controlled trial to evaluate the efficacy, safety, and tolerability of a single course of sulfadoxine-pyrimethamine (SP), amodiaquine + SP (AQ+SP) or dihydroartemisinin-piperaquine (DP) among schoolchildren to inform IPT. METHODS: Asymptomatic girls aged 8 to 12 years and boys aged 8 to 14 years enrolled in two primary schools in Tororo, Uganda were randomized to receive one of the study regimens or placebo, regardless of presence of parasitemia at enrollment, and followed for 42 days. The primary outcome was risk of parasitemia at 42 days. Survival analysis was used to assess differences between regimens. RESULTS: Of 780 enrolled participants, 769 (98.6%) completed follow-up and were assigned a treatment outcome. The risk of parasitemia at 42 days varied significantly between DP (11.7% [95% confidence interval (CI): 7.9, 17.1]), AQ+SP (44.3% [37.6, 51.5]), and SP (79.7% [95% CI: 73.6, 85.2], p<0.001). The risk of parasitemia in SP-treated children was no different than in those receiving placebo (84.6% [95% CI: 79.1, 89.3], p = 0.22). No serious adverse events occurred, but AQ+SP was associated with increased risk of vomiting compared to placebo (13.0% [95% CI: 9.1, 18.5] vs. 4.7% [95% CI: 2.5, 8.8], respectively, p = 0.003). CONCLUSIONS: DP was the most efficacious and well-tolerated regimen tested, although AQ+SP appears to be a suitable alternative for IPT in schoolchildren. Use of SP for IPT may not be appropriate in areas with high-level SP resistance in Africa. TRIAL REGISTRATION: ClinicalTrials.gov NCT00852371

    A Trial of the Efficacy, Safety and Impact on Drug Resistance of Four Drug Regimens for Seasonal Intermittent Preventive Treatment for Malaria in Senegalese Children

    Get PDF
    UNLABELLED: In the Sahel, most malaria deaths occur among children 1-4 years old during a short transmission season. A trial of seasonal intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) and a single dose of artesunate (AS) showed an 86% reduction in the incidence of malaria in Senegal but this may not be the optimum regimen. We compared this regimen with three alternatives. METHODS: 2102 children aged 6-59 months received either one dose of SP plus one dose of AS (SP+1AS) (the previous regimen), one dose of SP plus 3 daily doses of AS (SP+3AS), one dose of SP plus three daily doses of amodiaquine (AQ) (SP+3AQ) or 3 daily doses of AQ and AS (3AQ+3AS). Treatments were given once a month on three occasions during the malaria transmission season. The primary end point was incidence of clinical malaria. Secondary end-points were incidence of adverse events, mean haemoglobin concentration and prevalence of parasites carrying markers of resistance to SP. FINDINGS: The incidence of malaria, and the prevalence of parasitaemia at the end of the transmission season, were lowest in the group that received SP+3AQ: 10% of children in the group that received SP+1AS had malaria, compared to 9% in the SP+3AS group (hazard ratio HR 0.90, 95%CI 0.60, 1.36); 11% in the 3AQ+3AS group, HR 1.1 (0.76-1.7); and 5% in the SP+3AQ group, HR 0.50 (0.30-0.81). Mutations associated with resistance to SP were present in almost all parasites detected at the end of the transmission season, but the prevalence of Plasmodium falciparum was very low in the SP+3AQ group. CONCLUSIONS: Monthly treatment with SP+3AQ is a highly effective regimen for seasonal IPT. Choice of this regimen would minimise the spread of drug resistance and allow artemisinins to be reserved for the treatment of acute clinical malaria

    An Economic Evaluation of Home Management of Malaria in Uganda: An Interactive Markov Model

    Get PDF
    BACKGROUND: Home management of malaria (HMM), promoting presumptive treatment of febrile children in the community, is advocated to improve prompt appropriate treatment of malaria in Africa. The cost-effectiveness of HMM is likely to vary widely in different settings and with the antimalarial drugs used. However, no data on the cost-effectiveness of HMM programmes are available. METHODS/PRINCIPAL FINDINGS: A Markov model was constructed to estimate the cost-effectiveness of HMM as compared to conventional care for febrile illnesses in children without HMM. The model was populated with data from Uganda, but is designed to be interactive, allowing the user to adjust certain parameters, including the antimalarials distributed. The model calculates the cost per disability adjusted life year averted and presents the incremental cost-effectiveness ratio compared to a threshold value. Model output is stratified by level of malaria transmission and the probability that a child would receive appropriate care from a health facility, to indicate the circumstances in which HMM is likely to be cost-effective. The model output suggests that the cost-effectiveness of HMM varies with malaria transmission, the probability of appropriate care, and the drug distributed. Where transmission is high and the probability of appropriate care is limited, HMM is likely to be cost-effective from a provider perspective. Even with the most effective antimalarials, HMM remains an attractive intervention only in areas of high malaria transmission and in medium transmission areas with a lower probability of appropriate care. HMM is generally not cost-effective in low transmission areas, regardless of which antimalarial is distributed. Considering the analysis from the societal perspective decreases the attractiveness of HMM. CONCLUSION: Syndromic HMM for children with fever may be a useful strategy for higher transmission settings with limited health care and diagnosis, but is not appropriate for all settings. HMM may need to be tailored to specific settings, accounting for local malaria transmission intensity and availability of health services

    Sulphadoxine/pyrimethamine versus amodiaquine for treating uncomplicated childhood malaria in Gabon: A randomized trial to guide national policy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Gabon, following the adoption of amodiaquine/artesunate combination (AQ/AS) as first-line treatment of malaria and of sulphadoxine/pyrimethamine (SP) for preventive intermittent treatment of pregnant women, a clinical trial of SP versus AQ was conducted in a sub-urban area. This is the first study carried out in Gabon following the WHO guidelines.</p> <p>Methods</p> <p>A random comparison of the efficacy of AQ (10 mg/kg/day × 3 d) and a single dose of SP (25 mg/kg of sulphadoxine/1.25 mg/kg of pyrimethamine) was performed in children under five years of age, with uncomplicated falciparum malaria, using the 28-day WHO therapeutic efficacy test. In addition, molecular genotyping was performed to distinguish recrudescence from reinfection and to determine the frequency of the <it>dhps </it>K540E mutation, as a molecular marker to predict SP-treatment failure.</p> <p>Results</p> <p>The day-28 PCR-adjusted treatment failures for SP and AQ were 11.6% (8/69; 95% IC: 5.5–22.1) and 28.2% (20/71; 95% CI: 17.7–38.7), respectively This indicated that SP was significantly superior to AQ (<it>P </it>= 0.019) in the treatment of uncomplicated childhood malaria and for preventing recurrent infections. Both treatments were safe and well-tolerated, with no serious adverse reactions recorded. The <it>dhps </it>K540E mutation was not found among the 76 parasite isolates tested.</p> <p>Conclusion</p> <p>The level of AQ-resistance observed in the present study may compromise efficacy and duration of use of the AQ/AS combination, the new first-line malaria treatment. Gabonese policy-makers need to plan country-wide and close surveillance of AQ/AS efficacy to determine whether, and for how long, these new recommendations for the treatment of uncomplicated malaria remain valid.</p

    Similar efficacy and safety of artemether-lumefantrine (Coartem®) in African infants and children with uncomplicated falciparum malaria across different body weight ranges

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin-based combination therapy, including artemether-lumefantrine (AL), is currently recommended for the treatment of uncomplicated <it>Plasmodium falciparum </it>malaria. The objectives of the current analysis were to compare the efficacy and safety of AL across different body weight ranges in African children, and to examine the age and body weight relationship in this population.</p> <p>Methods</p> <p>Efficacy, safety and pharmacokinetic data from a randomized, investigator-blinded, multicentre trial of AL for treatment of acute uncomplicated <it>P. falciparum </it>malaria in infants and children in Africa were analysed according to body weight group.</p> <p>Results</p> <p>The trial included 899 patients (intent-to-treat population 886). The modified intent-to-treat (ITT) population (n = 812) comprised 143 children 5 to < 10 kg, 334 children 10 to < 15 kg, 277 children 15 to < 25 kg, and 58 children 25 to < 35 kg. The 28-day PCR cure rate, the primary endpoint, was comparable across all four body weight groups (97.2%, 98.9%, 97.8% and 98.3%, respectively). There were no clinically relevant differences in safety or tolerability between body weight groups. In the three AL body weight dosing groups (5 to < 15 kg, 15 to < 25 kg and 25 to < 35 kg), 80% of patients were aged 10-50 months, 46-100 months and 90-147 months, respectively.</p> <p>Conclusion</p> <p>Efficacy of AL in uncomplicated falciparum malaria is similar across body weight dosing groups as currently recommended in the label with no clinically relevant differences in safety or tolerability. AL dosing based on body weight remains advisable.</p

    The BH3 mimetic ABT-737 increases treatment efficiency of paclitaxel against hepatoblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of current chemotherapy in hepatoblastoma (HB) is reduction of tumour volume and vitality to enable complete surgical resection and reduce risk of recurrence or metastatic disease. Drug resistance remains a major challenge for HB treatment. In some malignancies inhibition of anti-apoptotic pathways using small BH3 mimetic molecules like ABT-737 shows synergistic effects in combination with cystotoxic agents in vitro. Now we analysed toxicology and synergistic effects of this approach in HB cells and HB xenografts.</p> <p>Methods</p> <p>Viability was monitored in HB cells (HUH6 and HepT1) and fibroblasts treated with paclitaxel, ABT-737 and a combination of both in a MTT assay. HUH6 xenotransplants in NOD/LtSz-scid IL2Rγnull mice (NSG) were treated accordingly. Tumour volume and body weight were monitored. Xenografted tumours were analysed by histology and immunohistochemistry (Ki-67 and TUNEL assay).</p> <p>Results</p> <p>ABT-737 reduced viability in HUH6 and HepT1 cells cultures at concentrations above 1 μM and also enhanced the cytotoxic effect of paclitaxel when used in combination. Thereby paclitaxel could be reduced tenfold to achieve similar reduction of viability of tumour cells. In contrast no toxicity in fibroblasts was observed at the same regiments. Subcutaneous HB (HUH6) treated with paclitaxel (12 mg/kg body weight, n = 7) led to delayed tumour growth in the beginning of the experiment. However, tumour volume was similar to controls (n = 5) at day 25. Combination treatment with paclitaxel and ABT-737 (100 mg/kg, n = 8) revealed significantly 10 fold lower relative tumour volumes compared to control and paclitaxel groups. Paclitaxel dependent toxicity was observed in this mice strain.</p> <p>Conclusions</p> <p>Our results demonstrate enhancement of chemotherapy by using modulators of apoptosis. Further analyses should include improved pharmacological formulations of paclitaxel and BH3 mimetics in order to reduce toxicological effects. Sensitising HB to apoptosis may also render resistant HB susceptible to established chemotherapy regimens.</p

    Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee

    Get PDF
    Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients

    CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    Get PDF
    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue
    corecore