47 research outputs found

    Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts

    Get PDF
    Introduction: With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large amounts of data coupled with machine-learning (ML) algorithms and statistical models to define the biological signature of the disease. The present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify—CCC) implemented in the MIP and (ii) their contribution over the standard diagnostic workup. / Methods: We examined individuals coming from the MIP installed across 3 Italian memory clinics, including subjects with Normal Cognition (CN, n = 432), Mild Cognitive Impairment (MCI, n = 456), and AD (n = 451). The GB classifier was applied to best discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was used to refine the classical disease categories. Four dementia experts provided their diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients. DC was based on clinical, neuropsychological, CSF, and structural MRI information and again with addition of the outcome from the MIP tools. / Results: The GB algorithm provided a classification accuracy of 85% in a nested 10-fold cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC identified five homogeneous clusters of subjects and 36 biomarkers that represented the disease fingerprint. In the DC assessment, CCC defined six clusters in the MCI population used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC showed a significant impact, evaluated as +5.99% of increment on physicians' DC. The influence of MIP on DC was rated from “slight” to “significant” in 80% of the cases. / Discussion: GB provided fair results in classification of CN, MCI, and AD. CCC identified homogeneous and promising classes of subjects via its semi-unsupervised approach. We measured the effect of the MIP on the physician's DC. Our results pave the way for the establishment of a new paradigm for ML discrimination of patients who will or will not convert to AD, a clinical priority for neurology

    Stable Modality-Specific Activity Flows As Reflected by the Neuroenergetic Approach to the fMRI Weighted Maps

    Get PDF
    This article uses the ideas of neuroenergetic and neural field theories to detect stimulation-driven energy flows in the brain during face and auditory word processing. In this analysis, energy flows are thought to create the stable gradients of the fMRI weighted summary images. The sources, from which activity spreads in the brain during face processing, were detected in the occipital cortex. The following direction of energy flows in the frontal cortex was described: the right inferior frontal = >the left inferior frontal = >the triangular part of the left inferior frontal cortex = >the left operculum. In the left operculum, a localized circuit was described. For auditory word processing, the sources of activity flows were detected bilaterally in the middle superior temporal regions, they were also detected in the left posterior superior temporal cortex. Thus, neuroenergetic assumptions may give a novel perspective for the analysis of neuroimaging data

    Do Postures of Distal Effectors Affect the Control of Actions of Other Distal Effectors? Evidence for a System of Interactions between Hand and Mouth

    Get PDF
    The present study aimed at determining whether, in healthy humans, postures assumed by distal effectors affect the control of the successive grasp executed with other distal effectors. In experiments 1 and 2, participants reached different objects with their head and grasped them with their mouth, after assuming different hand postures. The postures could be implicitly associated with interactions with large or small objects. The kinematics of lip shaping during grasp varied congruently with the hand posture, i.e. it was larger or smaller when it could be associated with the grasping of large or small objects, respectively. In experiments 3 and 4, participants reached and grasped different objects with their hand, after assuming the postures of mouth aperture or closure (experiment 3) and the postures of toe extension or flexion (experiment 4). The mouth postures affected the kinematics of finger shaping during grasp, that is larger finger shaping corresponded with opened mouth and smaller finger shaping with closed mouth. In contrast, the foot postures did not influence the hand grasp kinematics. Finally, in experiment 5 participants reached-grasped different objects with their hand while pronouncing opened and closed vowels, as verified by the analysis of their vocal spectra. Open and closed vowels induced larger and smaller finger shaping, respectively. In all experiments postures of the distal effectors induced no effect, or only unspecific effects on the kinematics of the reach proximal/axial component. The data from the present study support the hypothesis that there exists a system involved in establishing interactions between movements and postures of hand and mouth. This system might have been used to transfer a repertoire of hand gestures to mouth articulation postures during language evolution and, in modern humans, it may have evolved a system controlling the interactions existing between speech and gestures

    Brain regions essential for improved lexical access in an aged aphasic patient: a case report

    Get PDF
    BACKGROUND: The relationship between functional recovery after brain injury and concomitant neuroplastic changes is emphasized in recent research. In the present study we aimed to delineate brain regions essential for language performance in aphasia using functional magnetic resonance imaging and acquisition in a temporal sparse sampling procedure, which allows monitoring of overt verbal responses during scanning. CASE PRESENTATION: An 80-year old patient with chronic aphasia (2 years post-onset) was investigated before and after intensive language training using an overt picture naming task. Differential brain activation in the right inferior frontal gyrus for correct word retrieval and errors was found. Improved language performance following therapy was mirrored by increased fronto-thalamic activation while stability in more general measures of attention/concentration and working memory was assured. Three healthy age-matched control subjects did not show behavioral changes or increased activation when tested repeatedly within the same 2-week time interval. CONCLUSION: The results bear significance in that the changes in brain activation reported can unequivocally be attributed to the short-term training program and a language domain-specific plasticity process. Moreover, it further challenges the claim of a limited recovery potential in chronic aphasia, even at very old age. Delineation of brain regions essential for performance on a single case basis might have major implications for treatment using transcranial magnetic stimulation

    Brain classification reveals the right cerebellum as the best biomarker of dyslexia

    Get PDF
    Background Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel), because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique. Results The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38) falling outside of the control group (N = 39) 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD) grey matter volumes than controls and subjects with higher cerebellar declive (HCD) grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic subjects, so that lower and higher lentiform grey matter volumes compared to controls differently modulated the phonological and lexical performances. Best performances (observed in controls) corresponded to an optimal value of grey matter and they dropped for higher or lower volumes. Conclusion These results provide evidence for the existence of various subtypes of dyslexia characterized by different brain phenotypes. In addition, behavioural analyses suggest that these brain phenotypes relate to different deficits of automatization of language-based processes such as grapheme/phoneme correspondence and/or rapid access to lexicon entries. article available here: http://www.biomedcentral.com/1471-2202/10/6

    Detection of delirium by nurses among long-term care residents with dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delirium is a prevalent problem in long-term care (LTC) facilities where advanced age and cognitive impairment represent two important risk factors for this condition. Delirium is associated with numerous negative outcomes including increased morbidity and mortality. Despite its clinical importance, delirium often goes unrecognized by nurses. Although rates of nurse-detected delirium have been studied among hospitalized older patients, this issue has been largely neglected among demented older residents in LTC settings. The goals of this study were to determine detection rates of delirium and delirium symptoms by nurses among elderly residents with dementia and to identify factors associated with undetected cases of delirium.</p> <p>Methods</p> <p>In this prospective study (N = 156), nurse ratings of delirium were compared to researcher ratings of delirium. This procedure was repeated for 6 delirium symptoms. Sensitivity, specificity, positive and negative predictive values were computed. Logistic regressions were conducted to identify factors associated with delirium that is undetected by nurses.</p> <p>Results</p> <p>Despite a high prevalence of delirium in this cohort (71.5%), nurses were able to detect the delirium in only a minority of cases (13%). Of the 134 residents not identified by nurses as having delirium, only 29.9% of them were correctly classified. Detection rates for the 6 delirium symptoms varied between 39.1% and 58.1%, indicating an overall under-recognition of symptoms of delirium. Only the age of the residents (≥ 85 yrs) was associated with undetected delirium (OR: 4.1; 90% CI: [1.5–11.0]).</p> <p>Conclusion</p> <p>Detection of delirium is a major issue for nurses that clearly needs to be addressed. Strategies to improve recognition of delirium could result in a reduction of adverse outcomes for this very vulnerable population.</p

    Representation of the verb's argument-structure in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A verb's argument structure defines the number and relationships of participants needed for a complete event. One-argument (intransitive) verbs require only a subject to make a complete sentence, while two- and three-argument verbs (transitives and ditransitives) normally take direct and indirect objects. Cortical responses to verbs embedded into sentences (correct or with syntactic violations) indicate the processing of the verb's argument structure in the human brain. The two experiments of the present study examined whether and how this processing is reflected in distinct spatio-temporal cortical response patterns to isolated verbs and/or verbs presented in minimal context.</p> <p>Results</p> <p>The magnetoencephalogram was recorded while 22 native German-speaking adults saw 130 German verbs, presented one at a time for 150 ms each in experiment 1. Verb-evoked electromagnetic responses at 250 – 300 ms after stimulus onset, analyzed in source space, were higher in the left middle temporal gyrus for verbs that take only one argument, relative to two- and three-argument verbs. In experiment 2, the same verbs (presented in different order) were preceded by a proper name specifying the subject of the verb. This produced additional activation between 350 and 450 ms in or near the left inferior frontal gyrus, activity being larger and peaking earlier for one-argument verbs that required no further arguments to form a complete sentence.</p> <p>Conclusion</p> <p>Localization of sources of activity suggests that the activation in temporal and frontal regions varies with the degree by which representations of an event as a part of the verbs' semantics are completed during parsing.</p

    Testing for the Dual-Route Cascade Reading Model in the Brain: An fMRI Effective Connectivity Account of an Efficient Reading Style

    Get PDF
    Neuropsychological data about the forms of acquired reading impairment provide a strong basis for the theoretical framework of the dual-route cascade (DRC) model which is predictive of reading performance. However, lesions are often extensive and heterogeneous, thus making it difficult to establish precise functional anatomical correlates. Here, we provide a connective neural account in the aim of accommodating the main principles of the DRC framework and to make predictions on reading skill. We located prominent reading areas using fMRI and applied structural equation modeling to pinpoint distinct neural pathways. Functionality of regions together with neural network dissociations between words and pseudowords corroborate the existing neuroanatomical view on the DRC and provide a novel outlook on the sub-regions involved. In a similar vein, congruent (or incongruent) reliance of pathways, that is reliance on the word (or pseudoword) pathway during word reading and on the pseudoword (or word) pathway during pseudoword reading predicted good (or poor) reading performance as assessed by out-of-magnet reading tests. Finally, inter-individual analysis unraveled an efficient reading style mirroring pathway reliance as a function of the fingerprint of the stimulus to be read, suggesting an optimal pattern of cerebral information trafficking which leads to high reading performance

    Alzheimer patients engage an alternative cortical network during a memory task.

    No full text
    We conducted an event-related functional magnetic resonance imaging experiment to better understand the potentially compensatory alternative brain networks activated by a clinically relevant face-name association task in Alzheimer’s disease (AD) patients and matched control subjects. We recruited 17 healthy subjects and 12 AD patients at an early stage of the disease. They underwent functional magnetic resonance imaging scanning in four sessions. Each of the sessions combined a “study” phase and a “test” phase. Face/name pairs were presented in each study phase, and subjects were asked to associate faces with names. In the test phase, a recognition task, faces seen in the study phase were presented each with four different names. The task required selection of appropriate previously associated names from the study phase. Responses were recorded for post hoc classification into those successfully or unsuccessfully encoded. There were significant differences between the groups in accuracy and reaction time. Comparison of correctly versus incorrectly encoded and recognized pairs in the two groups indicated bilateral hippocampal hypoactivation both when encoding and recognizing in the AD group. Moreover, patients showed bilateral hyperactivation of parts of the parietal and frontal lobes. We discuss whether hyperactivation of a frontoparietal network reflects compensatory strategies for failing associative memory in AD patients
    corecore