16 research outputs found

    Transdermal delivery of tolterodine tartrate for overactive bladder treatment: In vitro, and in vivo evaluation

    Get PDF
    The purpose of the study was to develop a transdermal tolterodine tartrate (TT) patch and to analyse its efficacy for overactive bladder (OAB) treatment. Patches were prepared using various polymers and plasticizers via the solvent casting method. The patches were characterized for tensile strength, thickness, moisture content, modulus of elasticity and water absorption capacity. Differential scanning calorimetry and Fourier transform infrared analyses were also performed. To determine patch effectiveness, in vitro release, permeation and animal studies were performed. The patches showed satisfactory percentage of release, up to 89.9 %, and their mechanical properties included thickness (0.10–0.15 mm), tensile strength (4.62–9.98 MPa) and modulus of elasticity (20–29 MPa). There were no significant interactions between TT and other excipients. Animal studies indicated that the TT patch reduced the incidence of side effects; however, studies of longer duration are required to determine the effectiveness in treating OAB

    Transdermal delivery of tolterodine tartrate for overactive bladder treatment: In vitro, and in vivo evaluation

    Get PDF
    The purpose of the study was to develop a transdermal tolterodine tartrate (TT) patch and to analyse its efficacy for overactive bladder (OAB) treatment. Patches were prepared using various polymers and plasticizers via the solvent casting method. The patches were characterized for tensile strength, thickness, moisture content, modulus of elasticity and water absorption capacity. Differential scanning calorimetry and Fourier transform infrared analyses were also performed. To determine patch effectiveness, in vitro release, permeation and animal studies were performed. The patches showed satisfactory percentage of release, up to 89.9 %, and their mechanical properties included thickness (0.10–0.15 mm), tensile strength (4.62–9.98 MPa) and modulus of elasticity (20–29 MPa). There were no significant interactions between TT and other excipients. Animal studies indicated that the TT patch reduced the incidence of side effects; however, studies of longer duration are required to determine the effectiveness in treating OAB

    Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder

    No full text
    The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT) for the treatment of overactive bladder (OAB). Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE), vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%–91.68% and vesicle size was 253–845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB

    Transdermal delivery of tolterodine tartrate for overactive bladder treatment: In vitro and in vivo evaluation

    No full text
    The purpose of the study was to develop a transdermal tolterodine tartrate (TT) patch and to analyse its efficacy for overactive bladder (OAB) treatment. Patches were prepared using various polymers and plasticizers via the solvent casting method. The patches were characterized for tensile strength, thickness, moisture content, modulus of elasticity and water absorption capacity. Differential scanning calorimetry and Fourier transform infrared analyses were also performed. To determine patch effectiveness, in vitro release, permeation and animal studies were performed. The patches showed satisfactory percentage of release, up to 89.9 %, and their mechanical properties included thickness (0.10–0.15 mm), tensile strength (4.62–9.98 MPa) and modulus of elasticity (20–29 MPa). There were no significant interactions between TT and other excipients. Animal studies indicated that the TT patch reduced the incidence of side effects; however, studies of longer duration are required to determine the effectiveness in treating OAB

    Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential

    No full text
    Caulerpa racemosa (Forsskal) J. Agardh is a green seaweed used as food and folk medicine since ancient times in the Indo-Pacific region, particularly in southeast Asia. In this study, the proximate nutrient composition, phytochemical, anti-oxidant and anti-diabetic properties of sea grape C. racemosa collected from culture fishponds in Johor, Malaysia were analysed. The contents (dry weight basis) of carbohydrate, crude protein, crude lipids, ash and caloric value obtained were 33.42 ± 1.34%, 20.27 ± 0.14%, 4.20 ± 0.32%, 28.25 ± 0.27% and 2544.67 ± 7.04 cal g−1, respectively. The amino acid score (AAs) and biological protein value (213.43 mg g−1) indicated that C. racemosa presented a better protein quality. The most abundant fatty acids were C16:0 (palmitic acid: 63.27%), followed by C18:1 (oleic acid: 5.80%), and C18:2 áżł6 (linoleic acid: 5.33%). The analysis of the ash content indicated that essential minerals and trace elements, such as Ca, Fe, and Mn, were present in the seaweed. The total phenolic content (TPC) and total flavonoid content (TFC) observed in the ethyl acetate extract were 17.88 ± 0.78 mg GAE g−1 and 59.43 ± 2.45 mg QE g−1, respectively. The ethyl acetate extract of C. racemosa demonstrated notable anti-diabetic activity in diabetic induced rats. The low (100 mg kg−1) and high (200 mg kg−1) doses of cultivated C. racemosa extract exhibited a significant decrease (p < 0.05) in blood glucose levels while preventing weight loss, reducing plasma AST, ALT levels as a sign of hepatoprotective effect and recording albumin levels similar to positive control in diabetic induced rats. The results support the usefulness of cultivated C. racemosa as a potential functional food
    corecore