8 research outputs found

    Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the synthetic amorphous silicon dioxide (SiO2, SAS) from the JRC repository: NM-200, NM-201, NM-202, NM-203 and NM-204. NM-200 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-200, NM-201 and NM-204 (precipitated SAS) are produced via the precipitation process, whereas NM-202 and NM-203 (fumed or pyrogenic SAS) are produced via a high temperature process. Each of these NMs originates from one respective batch of commercially manufactured SAS. They are nanostructured, i.e. they consist of aggregated primary particles. The SAS NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physical-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as the JRC.JRC.I.4-Nanobioscience

    Multi-walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties

    Get PDF
    In 2011 the JRC launched a Repository for Representative Test Materials that supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials' (WPMN) exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The JRC Repository responds to a need for availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The present report presents the physico-chemical characterisation of the multi-walled carbon nanotubes (MWCNT) from the JRC Repository: NM-400, NM-401, NM-402 and NM-403. NM-400 was selected as principal material for the OECD WPMN testing programme. They are produced by catalytic chemical vapour deposition. Each of these NMs originates from one respective batch of commercially manufactured MWCNT. They are nanostructured, i.e. they consist of more than one graphene layer stacked on each other and rolled together as concentric tubes. The MWCNT NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action.JRC.I.4-Nanobioscience

    Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the Titanium dioxide series from the JRC repository: NM-100, NM-101, NM-102, NM-103, NM-104 and NM-105. NM-105 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-100 is included in the series as a bulk comparator. Each of these NMs originates from one batch of commercially manufactured TiO2. The TiO2 NMs may be used as representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physico-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as by the JRC.JRC.I.4-Nanobioscience

    Workshop on Regulatory Preparedness for Innovation in Nanotechnology

    Get PDF
    This report summarises the presentations and discussions at the first NanoReg2 Workshop on Regulatory Preparedness for Innovation in Nanotechnology held in Ispra, Italy 5 to 6 October 2017 and attended by approximately 60 regulators, industry representatives and other stakeholders. NanoReg2 is a European Union (EU) Horizon 2020 project. At the workshop, Regulatory Preparedness was defined as the regulators' timely awareness of innovations and the regulator's actions to check whether present legislation covers all safety aspects of each innovation, including initiating revision of the legislation as appropriate. Regulatory Preparedness, and Safe-by-Design (SbD) jointly constitute the NanoReg2 Safe Innovation Approach (SIA) for developing innovative products based on nanotechnology. The workshop aimed to gather views and identify current practices in regulatory work on safety of innovative products, tools already in use or needed, and potential difficulties in implementing Regulatory Preparedness in the EU. Presentations addressed the current state of the safety of nanotechnology innovation. The viewpoints included the regulatory framework, the principles behind it and the agencies and authorities enforcing it; nanosafety research projects and their support system (e.g. the current EU Horizon 2020 Framework Programme); national nanosafety initiatives; and the development of tools, such as foresight tools and harmonised test guidelines by the OECD for data generation. The workshop served to generate ideas for achieving Regulatory Preparedness. The participants recognised that while regulators deal with the safety of innovations, only few systematic approaches to this work exist. Some innovative products may reach the market before their safety has been appropriately assessed, as illustrated by RAPEX, the Rapid Exchange of Information System. A continuous and proactive combination of interconnected activities was considered to be required for ensuring Regulatory Preparedness. Thus, anticipation, e.g. horizon scanning, was seen as important, as was communication between regulators, innovators (industry) and other stakeholders. Regulators need to become aware of innovative products under development to ensure that the legislation and methods for safety assessment are available and adequate. Innovators must be aware of regulatory requirements and their likely development. This mutual awareness helps to develop safe products and to avoid delays or other problems in obtaining market approval. Awareness can be achieved through communication, which requires trust, e.g. promoted via "trusted environments" for confidential inquiries and information sharing. Furthermore, regulators need early access to the existing information and data relevant to safety assessment of innovative products to provide timely guidance and advice to Industry as well as to develop strategies for dealing with uncertainty, e.g. by applying the precautionary principle. Regulatory Preparedness was discussed as part of the SIA, and a "road map" of actions was suggested and outlined. The workshop has thus contributed towards acceptance of implementing Regulatory Preparedness for innovation in nanotechnology through the participation of a variety of stakeholders. This paves the way for a better dialogue among stakeholders in a fast economic development cycle, where it is even more important to quickly identify emerging needs for new approaches to regulatory issues for innovationJRC.F.2-Consumer Products Safet

    Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media—is there a Rationale for Harmonization?

    No full text
    Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.JRC.I.4-Nanobioscience

    Nanomaterial grouping: Existing approaches and future recommendations

    No full text
    The physico-chemical properties of manufactured nanomaterials (NMs) can be fine-tuned to obtain different functionalities addressing the needs of specific industrial applications. The physico-chemical properties of NMs also drive their biological interactions. Accordingly, each NM requires an adequate physico-chemical characterization and potentially an extensive and time-consuming (eco)toxicological assessment, depending on regulatory requirements. Grouping and read-across approaches, which have already been established for chemicals in general, are based on similarity between substances and can be used to fill data gaps without performing additional testing. Available data on “source” chemicals are thus used to predict the fate, toxicokinetics and/or (eco)toxicity of structurally similar “target” chemical(s). For NMs similar approaches are only beginning to emerge and several challenges remain, including the identification of the most relevant physico-chemical properties for supporting the claim of similarity. In general, NMs require additional parameters for a proper physico-chemical description. Furthermore, some parameters change during a NM's life cycle, suggesting that also the toxicological profile may change. This paper compares existing concepts for NM grouping, considering their underlying basic principles and criteria as well as their applicability for regulatory and other purposes. Perspectives and recommendations based on experiences obtained during the EU Horizon 2020 project NanoReg2 are presented. These include, for instance, the importance of harmonized data storage systems, the application of harmonized scoring systems for comparing biological responses, and the use of high-throughput and other screening approaches. We also include references to other ongoing EU projects addressing some of these challenges.JRC.F.2-Consumer Products Safet
    corecore