461 research outputs found
Entangling ability of a beam splitter in the presence of temporal which-path information
We calculate the amount of polarization-entanglement induced by two-photon
interference at a lossless beam splitter. Entanglement and its witness are
quantified respectively by concurrence and the Bell-CHSH parameter. In the
presence of a Mandel dip, the interplay of two kinds of which-path information
-- temporal and polarization -- gives rise to the existence of entangled
polarization-states that cannot violate the Bell-CHSH inequality.Comment: 8 pages including 2 figure
Propagation of light through small clouds of cold interacting atoms
We demonstrate experimentally that a cloud of cold atoms with a size
comparable to the wavelength of light can induce large group delays on a laser
pulse when the laser is tightly focused on it and is close to an atomic
resonance. Delays as large as -10 ns are observed, corresponding to
"superluminal" propagation with negative group velocities as low as -300 m/s.
Strikingly, this large delay is associated with a moderate extinction owing to
the very small size of the cloud and to the light-induced interactions between
atoms. It implies that a large phase shift is imprinted on the continuous laser
beam, and opens interesting perspectives for applications to quantum
technologies.Comment: 5 pages, 3 figures Supplemental Material : 2 pages, 2 Figure
Complete and Deterministic discrimination of polarization Bell state assisted by momentum entanglement
A complete and deterministic Bell state measurement was realized by a simple
linear optics experimental scheme which adopts 2-photon polarization-momentum
hyperentanglement. The scheme, which is based on the discrimination among the
single photon Bell states of the hyperentangled state, requires the adoption of
standard single photon detectors. The four polarization Bell states have been
measured with average fidelity by using the linear momentum
degree of freedom as the ancilla. The feasibility of the scheme has been
characterized as a function of the purity of momentum entanglement.Comment: 4 pages, v2, comments adde
Observation of suppression of light scattering induced by dipole-dipole interactions in a cold atomic ensemble
We study the emergence of collective scattering in the presence of
dipole-dipole interactions when we illuminate a cold cloud of rubidium atoms
with a near-resonant and weak intensity laser. The size of the atomic sample is
comparable to the wavelength of light. When we gradually increase the atom
number from 1 to 450, we observe a broadening of the line, a small red shift
and, consistently with these, a strong suppression of the scattered light with
respect to the noninteracting atom case. Numerical simulations, which include
the internal atomic level structure, agree with the data.Comment: 5 pages, 5 figure
Phase-stable source of polarization-entangled photons in a linear double-pass configuration
We demonstrate a compact, robust, and highly efficient source of
polarization-entangled photons, based on linear bi-directional down-conversion
in a novel 'folded sandwich' configuration. Bi-directionally pumping a single
periodically poled KTiOPO (ppKTP) crystal with a 405-nm laser diode, we
generate entangled photon pairs at the non-degenerate wavelengths 784 nm
(signal) and 839 nm (idler), and achieve an unprecedented detection rate of
11.8 kcps for 10.4 W of pump power (1.1 million pairs / mW), in a 2.9-nm
bandwidth, while maintaining a very high two-photon entanglement quality, with
a Bell-state fidelity of %
Mitigating radiation damage of single photon detectors for space applications
Single-photon detectors in space must retain useful performance
characteristics despite being bombarded with sub-atomic particles. Mitigating
the effects of this space radiation is vital to enabling new space applications
which require high-fidelity single-photon detection. To this end, we conducted
proton radiation tests of various models of avalanche photodiodes (APDs) and
one model of photomultiplier tube potentially suitable for satellite-based
quantum communications. The samples were irradiated with 106 MeV protons at
doses approximately equivalent to lifetimes of 0.6 , 6, 12 and 24 months in a
low-Earth polar orbit. Although most detection properties were preserved,
including efficiency, timing jitter and afterpulsing probability, all APD
samples demonstrated significant increases in dark count rate (DCR) due to
radiation-induced damage, many orders of magnitude higher than the 200 counts
per second (cps) required for ground-to-satellite quantum communications. We
then successfully demonstrated the mitigation of this DCR degradation through
the use of deep cooling, to as low as -86 degrees C. This achieved DCR below
the required 200 cps over the 24 months orbit duration. DCR was further reduced
by thermal annealing at temperatures of +50 to +100 degrees C.Comment: The license has been corrected. Note that the license of v2 was
incorrect and not valid. No other changes since v
A Compact Solid State Detector for Small Angle Particle Tracking
MIDAS (MIcrostrip Detector Array System) is a compact silicon tracking
telescope for charged particles emitted at small angles in intermediate energy
photonuclear reactions. It was realized to increase the angular acceptance of
the DAPHNE detector and used in an experimental program to check the
Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron, MAMI. MIDAS
provides a trigger for charged hadrons, p/pi identification and particle
tracking in the region 7 deg < theta < 16 deg. In this paper we present the
main characteristics of MIDAS and its measured performances.Comment: 13 pages (9 figures). Submitted to NIM
- …