56 research outputs found
Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system
Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δE), transpiration (T, δT) and ET (δET) to partition the total water flux. Due to the extreme heat and aridity, δE and δT were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δE, δT, and δET increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 â 39% of the total source water was used by the crop, considering the typical 60 â 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems
Hysteresis of soil moisture spatial heterogeneity and the âhomogenizingâ effect of vegetation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94935/1/wrcr12475.pd
Recommended from our members
Precipitation legacies amplify ecosystem nitrogen losses from nitric oxide emissions in a PinyonâJuniper dryland
Climate change is increasing the variability of precipitation, altering the frequency of soil drying-wetting events and the distribution of seasonal precipitation. These changes in precipitation can alter nitrogen (N) cycling and stimulate nitric oxide (NO) emissions (an air pollutant at high concentrations), which may vary according to legacies of past precipitation and represent a pathway for ecosystem N loss. To identify whether precipitation legacies affect NO emissions, we excluded or added precipitation during the winter growing season in a Pinyon-Juniper dryland and measured in situ NO emissions following experimental wetting. We found that the legacy of both excluding and adding winter precipitation increased NO emissions early in the following summer; cumulative NO emissions from the winter precipitation exclusion plots (2750âÂąâ972âÎźgâN-NOâm-2 ) and winter water addition plots (2449âÂąâ408âÎźgâN-NOâm-2 ) were higher than control plots (1506âÂąâ397âÎźgâN-NOâm-2 ). The increase in NO emissions with previous precipitation exclusion was associated with inorganic N accumulation, while the increase in NO emissions with previous water addition was associated with an upward trend in microbial biomass. Precipitation legacies can accelerate soil NO emissions and may amplify ecosystem N loss in response to more variable precipitation
Multiscale modeling and evaluation of urban surface energy balance in the Phoenix metropolitan area
AbstractPhysical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of input data, (iii) model resolution, and (iv) flux observation resolution. Observations from a new 22.1-m flux tower situated within a residential neighborhood in Phoenix, Arizona, are utilized to evaluate the ability of the urbanized WRF to resolve finescale surface energy balance (SEB) when using the urban classes derived from the 30-m-resolution National Land Cover Database. Modeled SEB response to a large seasonal variation of net radiation forcing was tested during synoptically quiescent periods of high pressure in winter 2011 and premonsoon summer 2012. Results are presented from simulations employing five nested domains down to 333-m horizontal resolution. A comparative analysis of model cases testing parameterization of physical processes was done using four configurations of urban parameterization for the bulk urban scheme versus three representations with the Urban Canopy Model (UCM) scheme, and also for two types of planetary boundary layer parameterization: the local MellorâYamadaâJanjiÄ scheme and the nonlocal Yonsei University scheme. Diurnal variation in SEB constituent fluxes is examined in relation to surface-layer stability and modeled diagnostic variables. Improvement is found when adapting UCM for Phoenix with reduced errors in the SEB components. Finer model resolution is seen to have insignificant (<1 standard deviation) influence on mean absolute percent difference of 30-min diurnal mean SEB terms.</jats:p
Recommended from our members
Urban greenness and its cooling effects are influenced by changes in drought, physiography, and socio-demographics in Los Angeles, CA
Experimental landscape ecology
Abstract Experimentation in landscape ecology is widely conducted using diverse approaches to answer a broad range of questions. By assessing the response to controlled manipulations alternate hypotheses can be clearly refuted, model parameters quantified, and conditions are often ripe for unexpected insights. Results from landscape experiments complement the many well developed observational and modeling approaches more commonly used in landscape ecology. To better understand how landscape experimentation has been conducted and to identify future research directions, we reviewed and organized the diversity of experiments. We identified fifteen distinct landscape experiment types, which we categorized into four broad groups including (I) identifying landscape structure, (II) identifying how ecological processes vary within existing landscapes, (III) identifying how landscape structure influences ecological processes, and (IV) identifying landscape pattern formation factors. Experiment types vary along axes of scalable to real landscapes and generalizability, suitability for analysis through traditional experimental design and flexibility of experimental setup, and complexity of implementation and resource requirements. The next generation of experiments are benefiting from more explicit inclusion of scaling theories and tighter coupling between experiments and cyberinfrastructure. Future experimental opportunities for landscape ecologists include expanded collaborations among experiments, better representations of microbial-soil structure relationships at microscales, and direct evaluations of landscape interactions with global changes. The history, current practice, and future needs of landscape ecological research strongly support an expanded role of experimental approaches that complements the rich observational and modeling strengths of the field
Ecological stability and complexity: Is it necessarily catastrophic?
It has been shown that many ecological systems exhibit a degree of stability and complexity which is above that predicted by current theoretical models. The early works of Gardner & Ashby and May have suggested that a catastrophic decrease in stability occurs as system size and connectance increases above a threshold value. A similar model, the NK model, developed by Kauffman also shows a similar phenomena of complexity catastrophe in the context of a randomly connected Boolean network. In this paper we evaluate the NK model in an ecological context and explore the similarities between this and previous models. In these models, a fitness function is used to assess the state of a system; we interpret this fitness function as ecosystem stability. In addition, this paper describes a process which allows the system to begin in a simple state and recursively develop into a complex state. This recursive process generates systems which do not exhibit the complexity catastrophes found in previ..
- âŚ