184 research outputs found
Future Fitness of Female Insect Pests in Temporally Stable and Unstable Habitats and Its Impact on Habitat Utility as Refuges for Insect Resistance Management
The long-term fitness of individuals is examined in complex and temporally dynamic ecosystems. We call this multigeneration fitness measure “future fitness”. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a polyphagous insect that feeds on many wild and cultivated hosts. While four generations of H. zea occur during the cropping season in the U.S. Mid Southern agroecosysem, the latter two generations were of most interest, as corn (which has been largely nontransgenic in the Mid-South) dominates the first two generations in the cropping system. In simulations of the evolution of resistance to Bt-transgenic crops, cotton refuge areas were found to be significantly more effective than similar soybean acreages at delaying the evolution of resistance. Cotton is a suitable host for H. zea during two late summer generations, while a soybean field is suitable for only one of these generations, therefore soybean fields of other maturity groups were simulated as being attractive during the alternative generation. A hypothetical soybean variety was tested in which a single field would be attractive over both generations and it was found to be significantly more effective at delaying resistance than simulated conventional soybean varieties. Finally, the placement of individuals emerging at the start of the 3rd (first without corn) generation was simulated in either refuge cotton, conventional soybean and the hypothetical long attractive soybean and the mean number of offspring produced was measured at the end of the season. Although females in conventional and long soybean crops had the same expected fecundity, because of differences in temporal stability of the two crops, the long soybean simulations had significantly more H. zea individuals at the end of the season than the conventional soybean simulations. These simulations demonstrate that the long-term fecundity associated with an individual is dependent not only on the fecundity of that individual in its current habitat, but also the temporal stability of habitats, the ecosystem at large and the likelihood that the individual's offspring will move into different habitats
Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury
<p>Abstract</p> <p>Background</p> <p>Chronic spinal cord injury (SCI) can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration.</p> <p>Methods</p> <p>Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an Infinite Horizon Impactor. Animals were randomly distributed into 5 groups and killed 1 (n = 4), 28 (n = 4), 120 (n = 4), 450 (n = 5), or 540 (n = 5) days after injury. Morphometric and immunohistochemical studies were then performed on 1 mm block sections, 6 mm cranial and 6 mm caudal to the lesion epicenter. The SPSS 11.5 t test was used to determine differences between quantitative measures.</p> <p>Results</p> <p>Here, we document the first report of an ascending central canal dilation and progressive ependymal disruption cranial to the epicenter of injury in a contusion model of chronic SCI, which was characterized by extensive dural fibrosis and intraparenchymal cystic cavitation. Expansion of the central canal lumen beyond a critical diameter corresponded with ependymal cell ciliary loss, an empirically predictable thinning of the ependymal region, and a decrease in cell proliferation in the ependymal region. Large, aneurysmal dilations of the central canal were accompanied by disruptions in the ependymal layer, periependymal edema and gliosis, and destruction of the adjacent neuropil.</p> <p>Conclusion</p> <p>Cells of the ependymal region play an important role in CSF homeostasis, cellular signaling and wound repair in the spinal cord. The possible effects of this ascending pathology on ependymal function are discussed. Our studies suggest central canal dilation and ependymal region disruption as steps in the pathogenesis of chronic SCI, identify central canal dilation as a marker of chronic SCI and provide novel targets for therapeutic intervention.</p
Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths.
Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths' evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution
The effect of a comprehensive lifestyle intervention on cardiovascular risk factors in pharmacologically treated patients with stable cardiovascular disease compared to usual care: a randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>The additional benefit of lifestyle interventions in patients receiving cardioprotective drug treatment to improve cardiovascular risk profile is not fully established.</p> <p>The objective was to evaluate the effectiveness of a target-driven multidisciplinary structured lifestyle intervention programme of 6 months duration aimed at maximum reduction of cardiovascular risk factors in patients with cardiovascular disease (CVD) compared with usual care.</p> <p>Methods</p> <p>A single centre, two arm, parallel group randomised controlled trial was performed. Patients with stable established CVD and at least one lifestyle-related risk factor were recruited from the vascular and cardiology outpatient departments of the university hospital. Blocked randomisation was used to allocate patients to the intervention (n = 71) or control group (n = 75) using an on-site computer system combined with allocations in computer-generated tables of random numbers kept in a locked computer file. The intervention group received the comprehensive lifestyle intervention offered in a specialised outpatient clinic in addition to usual care. The control group continued to receive usual care. Outcome measures were the lifestyle-related cardiovascular risk factors: smoking, physical activity, physical fitness, diet, blood pressure, plasma total/HDL/LDL cholesterol concentrations, BMI, waist circumference, and changes in medication.</p> <p>Results</p> <p>The intervention led to increased physical activity/fitness levels and an improved cardiovascular risk factor profile (reduced BMI and waist circumference). In this setting, cardiovascular risk management for blood pressure and lipid levels by prophylactic treatment for CVD in usual care was already close to optimal as reflected in baseline levels. There was no significant improvement in any other risk factor.</p> <p>Conclusions</p> <p>Even in CVD patients receiving good clinical care and using cardioprotective drug treatment, a comprehensive lifestyle intervention had a beneficial effect on some cardiovascular risk factors. In the present era of cardiovascular therapy and with the increasing numbers of overweight and physically inactive patients, this study confirms the importance of risk factor control through lifestyle modification as a supplement to more intensified drug treatment in patients with CVD.</p> <p>Trial registration</p> <p>ISRCTN69776211 at <url>http://www.controlled-trials.com</url></p
“Positive” Results Increase Down the Hierarchy of the Sciences
The hypothesis of a Hierarchy of the Sciences with physical sciences at the top, social sciences at the bottom, and biological sciences in-between is nearly 200 years old. This order is intuitive and reflected in many features of academic life, but whether it reflects the “hardness” of scientific research—i.e., the extent to which research questions and results are determined by data and theories as opposed to non-cognitive factors—is controversial. This study analysed 2434 papers published in all disciplines and that declared to have tested a hypothesis. It was determined how many papers reported a “positive” (full or partial) or “negative” support for the tested hypothesis. If the hierarchy hypothesis is correct, then researchers in “softer” sciences should have fewer constraints to their conscious and unconscious biases, and therefore report more positive outcomes. Results confirmed the predictions at all levels considered: discipline, domain and methodology broadly defined. Controlling for observed differences between pure and applied disciplines, and between papers testing one or several hypotheses, the odds of reporting a positive result were around 5 times higher among papers in the disciplines of Psychology and Psychiatry and Economics and Business compared to Space Science, 2.3 times higher in the domain of social sciences compared to the physical sciences, and 3.4 times higher in studies applying behavioural and social methodologies on people compared to physical and chemical studies on non-biological material. In all comparisons, biological studies had intermediate values. These results suggest that the nature of hypotheses tested and the logical and methodological rigour employed to test them vary systematically across disciplines and fields, depending on the complexity of the subject matter and possibly other factors (e.g., a field's level of historical and/or intellectual development). On the other hand, these results support the scientific status of the social sciences against claims that they are completely subjective, by showing that, when they adopt a scientific approach to discovery, they differ from the natural sciences only by a matter of degree
Automated Detection of Antenna Malfunctions in Large-N Interferometers: A case study With the Hydrogen Epoch of Reionization Array
We present a framework for identifying and flagging malfunctioning antennas in large radio
interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure
modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based
solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present
tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these
techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study.
Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets
Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock
<p>Abstract</p> <p>Background</p> <p>Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated.</p> <p>Results</p> <p>The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 Å of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method.</p> <p>Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed.</p> <p>Conclusion</p> <p>Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.</p
The possible role of local air pollution in climate change in West Africa
The climate of West Africa is characterized by a sensitive monsoon system that is associated with marked natural precipitation variability. This region has been and is projected to be subject to substantial global and regional-scale changes including greenhouse-gas-induced warming and sea-level rise, land-use and land-cover change, and substantial biomass burning. We argue that more attention should be paid to rapidly increasing air pollution over the explosively growing cities of West Africa, as experiences from other regions suggest that this can alter regional climate through the influences of aerosols on clouds and radiation, and will also affect human health and food security. We need better observations and models to quantify the magnitude and characteristics of these impacts
Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition.
Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.This work was supported by the University of Cambridge, Cancer Research UK, Hutchison Whampoa; Cancer Research UK grants A6691 and A9892 (M.N., N.K., C.J.T., D.C.B., C.J.C., L.S.G, and M.S.); a fellowship from the Uehara Memorial Foundation (M.S.).This is the author accepted manuscript. The final version is available from the American Society for Cell Biology via http://dx.doi.org/10.1091/mbc.E15-01-000
Current and prospective pharmacological targets in relation to antimigraine action
Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
- …