4,362 research outputs found

    Conditions for multi-functionality in a rhythm generating network inspired by turtle scratching

    Get PDF
    Rhythmic behaviors such as breathing, walking, and scratching are vital to many species. Such behaviors can emerge from groups of neurons, called central pattern generators, in the absence of rhythmic inputs. In vertebrates, the identification of the cells that constitute the central pattern generator for particular rhythmic behaviors is difficult, and often, its existence has only been inferred. For example, under experimental conditions, intact turtles generate several rhythmic scratch motor patterns corresponding to non-rhythmic stimulation of different body regions. These patterns feature alternating phases of motoneuron activation that occur repeatedly, with different patterns distinguished by the relative timing and duration of activity of hip extensor, hip flexor, and knee extensor motoneurons. While the central pattern generator network responsible for these outputs has not been located, there is hope to use motoneuron recordings to deduce its properties. To this end, this work presents a model of a previously proposed central pattern generator network and analyzes its capability to produce two distinct scratch rhythms from a single neuron pool, selected by different combinations of tonic drive parameters but with fixed strengths of connections within the network. We show through simulation that the proposed network can achieve the desired multi-functionality, even though it relies on hip unit generators to recruit appropriately timed knee extensor motoneuron activity, including a delay relative to hip activation in rostral scratch. Furthermore, we develop a phase space representation, focusing on the inputs to and the intrinsic slow variable of the knee extensor motoneuron, which we use to derive sufficient conditions for the network to realize each rhythm and which illustrates the role of a saddle-node bifurcation in achieving the knee extensor delay. This framework is harnessed to consider bistability and to make predictions about the responses of the scratch rhythms to input changes for future experimental testing

    Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking

    Get PDF
    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride–silver telluride (PbTe–Ag_2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe–Ag_2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag_2Te nanowire-based nanocomposite produced in similar method, the PbTe–Ag_2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe–Ag_2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting

    Composition Modulation of Ag_2Te Nanowires for Tunable Electrical and Thermal Properties

    Get PDF
    In this article, we demonstrated that composition modulation of Ag_2Te nanowires can be achieved during the self-templated transformation of Te nanowires into Ag_2Te nanowires during solution phase synthesis, which provides a mean to tune the carrier density of the Ag_2Te nanowires. Both nearly stoichiometric and Ag-rich nanowires have been synthesized, which give rise to p-type and n-type Ag_2Te nanocomposites after hot press, respectively. The electrical and thermal properties of the two kinds of samples have been measured. Theoretical modeling based on the near-equilibrium Boltzmann transport equations has been used to understand the experimental results. We found that ZT of the heavily doped n-type sample reaches 0.55 at 400 K, which is the highest ZT value reported for Ag_2Te at the same temperature mainly due to the reduced thermal conductivity by the nanostructures. Theoretical analysis on the carrier transport shows that the power factor is also very well optimized in the doped Ag_2Te sample considering the reduced carrier mobility by the nanostructures

    The Noncommutative Harmonic Oscillator based in Simplectic Representation of Galilei Group

    Full text link
    In this work we study symplectic unitary representations for the Galilei group. As a consequence the Schr\"odinger equation is derived in phase space. The formalism is based on the non-commutative structure of the star-product, and using the group theory approach as a guide a physical consistent theory in phase space is constructed. The state is described by a quasi-probability amplitude that is in association with the Wigner function. The 3D harmonic oscillator and the noncommutative oscillator are studied in phase space as an application, and the Wigner function associated to both cases are determined.Comment: 7 pages,no figure

    The formation of professional identity in medical students: considerations for educators

    Get PDF
    <b>Context</b> Medical education is about more than acquiring an appropriate level of knowledge and developing relevant skills. To practice medicine students need to develop a professional identity – ways of being and relating in professional contexts.<p></p> <b>Objectives</b> This article conceptualises the processes underlying the formation and maintenance of medical students’ professional identity drawing on concepts from social psychology.<p></p> <b>Implications</b> A multi-dimensional model of identity and identity formation, along with the concepts of identity capital and multiple identities, are presented. The implications for educators are discussed.<p></p> <b>Conclusions</b> Identity formation is mainly social and relational in nature. Educators, and the wider medical society, need to utilise and maximise the opportunities that exist in the various relational settings students experience. Education in its broadest sense is about the transformation of the self into new ways of thinking and relating. Helping students form, and successfully integrate their professional selves into their multiple identities, is a fundamental of medical education

    How do field of view and resolution affect the information content of panoramic scenes for visual navigation? A computational investigation

    Get PDF
    The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal’s behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently

    The role of positive goal engagement in increased mental well-being among individuals with chronic non-cancer pain.

    Get PDF
    Individuals with chronic pain commonly report significant functional impairment and reduced quality of life. Despite this, little is known about psychological processes and mechanisms underpinning enhancements in well-being within this population. The study aimed to investigate whether (1) increased levels of pain intensity and interference were associated with lower levels of mental well-being, (2) increased positive goal engagement was associated with higher levels of mental well-being and (3) whether the relationships between pain characteristics and mental well-being were mediated by increased positive goal engagement. A total of 586 individuals with chronic pain participated in the cross-sectional, online study. Participants completed self-report measures to assess pain intensity and interference, mental well-being and goal motivation variables. Results showed that pain interference and positive goal engagement were associated with mental well-being. Moreover, the relationship between pain interference and mental well-being was partially mediated by positive goal engagement. The results provide tentative evidence for the protective role of positive goal engagement in enabling individuals with chronic pain to maintain a sense of mental well-being. The study develops the biopsychosocial model of chronic pain by examining the roles and relationships of relevant yet previously unexplored psychological constructs. The promotion of mental well-being through the enhancement of positive goal engagement is discussed, offering a platform for further research and clinical interventions

    Within-individual changes reveal increasing social selectivity with age in rhesus macaques

    Get PDF
    This is the final version. Available from National Academy of Sciences via the DOI in this record. Data, Materials, and Software Availability. Data are available from the Figshare Repository (https://doi.org/10.6084/m9.figshare.21551295).Accumulating evidence in humans and other mammals suggests older individuals tend to have smaller social networks. Uncovering the cause of these declines can inform how changes in social relationships with age affect health and fitness in later life. While age-based declines in social networks have been thought to be detrimental, physical and physiological limitations associated with age may lead older individuals to adjust their social behavior and be more selective in partner choice. Greater selectivity with age has been shown in humans, but the extent to which this phenomenon occurs across the animal kingdom remains an open question. Using longitudinal data from a population of rhesus macaques on Cayo Santiago, we provide compelling evidence in a nonhuman animal for within-individual increases in social selectivity with age. Our analyses revealed that adult female macaques actively reduced the size of their networks as they aged and focused on partners previously linked to fitness benefits, including kin and partners to whom they were strongly and consistently connected earlier in life. Females spent similar amounts of time socializing as they aged, suggesting that network shrinkage does not result from lack of motivation or ability to engage, nor was this narrowing driven by the deaths of social partners. Furthermore, females remained attractive companions and were not isolated by withdrawal of social partners. Taken together, our results provide rare empirical evidence for social selectivity in nonhumans, suggesting that patterns of increasing selectivity with age may be deeply rooted in primate evolution.National Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthNational Institute of HealthKaufman Foundatio

    Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant

    Full text link
    In this work we carry out a noncommutative analysis of several Friedmann-Robert-Walker models, coupled to different types of perfect fluids and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. We notice that the noncommutative versions of these models show several relevant differences with respect to the correspondent commutative ones.Comment: 27 pages. 7 figures. JHEP style.arXiv admin note: substantial text overlap with arXiv:1104.481

    Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3

    Get PDF
    A novel and simple approach was used to disperse Cu nanoparticles uniformly in the Bi0.5Sb1.5Te3 matrix, and the thermoelectric properties were evaluated for the Cu-dispersed Bi0.5Sb1.5Te3. Polycrystalline Bi0.5Sb1.5Te3 powder prepared by encapsulated melting and grinding was dry-mixed with Cu(OAc)2 powder. After Cu(OAc)2 decomposition, the Cu-dispersed Bi0.5Sb1.5Te3 was hot-pressed. Cu nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix and acted as effective phonon scattering centers. The electrical conductivity increased systematically with increasing level of Cu nanoparticle dispersion. All specimens had a positive Seebeck coefficient, which confirmed that the electrical charge was transported mainly by holes. The thermoelectric figure of merit was enhanced remarkably over a wide temperature range of 323-523 K
    • …
    corecore