130 research outputs found
DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors
<p>Abstract</p> <p>Background</p> <p>Mosquitoes belonging to the Albitarsis Group (<it>Anopheles</it>: <it>Nyssorhynchus</it>) are of importance as malaria vectors across the Neotropics. The Group currently comprises six known species, and recent studies have indicated further hidden biodiversity within the Group. DNA barcoding has been proposed as a highly useful tool for species recognition, although its discriminatory utility has not been verified in closely related taxa across a wide geographic distribution.</p> <p>Methods</p> <p>DNA barcodes (658 bp of the mtDNA <it>Cytochrome c Oxidase </it>- <it>COI</it>) were generated for 565 <it>An. albitarsis </it>s.l. collected in Argentina, Brazil, Colombia, Paraguay, Trinidad and Venezuela over the past twenty years, including specimens from type series and type localities. Here we test the utility of currently advocated barcoding methodologies, including the Kimura-two-parameter distance model (K2P) and Neighbor-joining analysis (NJ), for determining species delineation within mosquitoes of the Neotropical Albitarsis Group of malaria vectors (<it>Anopheles</it>: <it>Nyssorhynchus</it>), and compare results with Bayesian analysis.</p> <p>Results</p> <p>Species delineation through barcoding analysis and Bayesian phylogenetic analysis, fully concur. Analysis of 565 sequences (302 unique haplotypes) resolved nine NJ tree clusters, with less than 2% intra-node variation. Mean intra-specific variation (K2P) was 0.009 (range 0.002 - 0.014), whereas mean inter-specific divergence were several-fold higher at 0.041 (0.020 - 0.056), supporting the reported "barcoding gap". These results show full support for separate species status of the six known species in the Albitarsis Group (<it>An. albitarsis </it>s.s., <it>An. albitarsis </it>F, <it>An. deaneorum</it>, <it>An. janconnae</it>, <it>An. marajoara </it>and <it>An. oryzalimnetes</it>), and also support species level status for two previously detected lineages - <it>An. albitarsis </it>G &<it>An. albitarsis </it>I (designated herein). In addition, we highlight the presence of a unique mitochondrial lineage close to <it>An. deaneorum </it>and <it>An. marajoara </it>(<it>An. albitarsis </it>H) from Rondônia and Mato Grosso in southwestern Brazil. Further integrated studies are required to confirm the status of this lineage.</p> <p>Conclusions</p> <p>DNA barcoding provides a reliable means of identifying both known and undiscovered biodiversity within the closely related taxa of the Albitarsis Group. We advocate its usage in future studies to elucidate the vector competence and respective distributions of all eight species in the Albitarsis Group and the novel mitochondrial lineage (<it>An. albitarsis </it>H) recovered in this study.</p
Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury
Repairing trauma to the central nervous system by replacement of glial support
cells is an increasingly attractive therapeutic strategy. We have focused on the
less-studied replacement of astrocytes, the major support cell in the central
nervous system, by generating astrocytes from embryonic human glial precursor
cells using two different astrocyte differentiation inducing factors. The
resulting astrocytes differed in expression of multiple proteins thought to
either promote or inhibit central nervous system homeostasis and regeneration.
When transplanted into acute transection injuries of the adult rat spinal cord,
astrocytes generated by exposing human glial precursor cells to bone
morphogenetic protein promoted significant recovery of volitional foot
placement, axonal growth and notably robust increases in neuronal survival in
multiple spinal cord laminae. In marked contrast, human glial precursor cells
and astrocytes generated from these cells by exposure to ciliary neurotrophic
factor both failed to promote significant behavioral recovery or similarly
robust neuronal survival and support of axon growth at sites of injury. Our
studies thus demonstrate functional differences between human astrocyte
populations and suggest that pre-differentiation of precursor cells into a
specific astrocyte subtype is required to optimize astrocyte replacement
therapies. To our knowledge, this study is the first to show functional
differences in ability to promote repair of the injured adult central nervous
system between two distinct subtypes of human astrocytes derived from a common
fetal glial precursor population. These findings are consistent with our
previous studies of transplanting specific subtypes of rodent glial precursor
derived astrocytes into sites of spinal cord injury, and indicate a remarkable
conservation from rat to human of functional differences between astrocyte
subtypes. In addition, our studies provide a specific population of human
astrocytes that appears to be particularly suitable for further development
towards clinical application in treating the traumatically injured or diseased
human central nervous system
Difference in balance measures between patients with chronic ankle instability and patients after an acute ankle inversion trauma
Neuromuscular control of the ankle is disturbed in patients with chronic ankle instability due to an initial ankle inversion trauma. Static balance is assumed to be a measure for this disturbance. Functional (ankle) scores are another way to evaluate ankle impairment. The hypothesis was that there is a difference in static balance measures between small groups of healthy subjects, patients after an acute ankle inversion trauma and patients with chronic ankle instability and that static balance measures correlate well with functional scores. Static balance in healthy subjects (N = 15), patients after a primary ankle inversion injury (N = 14) and patients with chronic ankle instability (N = 23) was tested with a single leg test on a force plate (Postural Sway test) and on a compliant floor (Simple Balance test). Functional impairment was evaluated with the Karlsson, AOFAS and SF-36 (ankle) scores. There was a statistically significant and clinically relevant difference in functional (ankle) scores, but not a statistically significant difference in balance measures between the groups. Balance measures did not correlate to the functional scores. It was concluded that, despite a clinically relevant difference in functional outcome measures between the groups, static balance measures do not appear to be useful for clinical application in the individual patient
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook
Surgical complications in neuromuscular scoliosis operated with posterior- only approach using pedicle screw fixation
<p>Abstract</p> <p>Background</p> <p>There are no reports describing complications with posterior spinal fusion (PSF) with segmental spinal instrumentation (SSI) using pedicle screw fixation in patients with neuromuscular scoliosis.</p> <p>Methods</p> <p>Fifty neuromuscular patients (18 cerebral palsy, 18 Duchenne muscular dystrophy, 8 spinal muscular atrophy and 6 others) were divided in two groups according to severity of curves; group I (< 90°) and group II (> 90°). All underwent PSF and SSI with pedicle screw fixation. There were no anterior procedures. Perioperative (within three months of surgery) and postoperative (after three months of surgery) complications were retrospectively reviewed.</p> <p>Results</p> <p>There were fifty (37 perioperative, 13 postoperative) complications. Hemo/pneumothorax, pleural effusion, pulmonary edema requiring ICU care, complete spinal cord injury, deep wound infection and death were major complications; while atelectesis, pneumonia, mild pleural effusion, UTI, ileus, vomiting, gastritis, tingling sensation or radiating pain in lower limb, superficial infection and wound dehiscence were minor complications. Regarding perioperative complications, 34(68%) patients had at least one major or one minor complication. There were 16 patients with pulmonary, 14 with abdominal, 3 with wound related, 2 with neurological and 1 cardiovascular complications, respectively. There were two deaths, one due to cardiac arrest and other due to hypovolemic shock. Regarding postoperative complications 7 patients had coccygodynia, 3 had screw head prominence, 2 had bed sore and 1 had implant loosening, respectively. There was a significant relationship between age and increased intraoperative blood loss (p = 0.024). However it did not increased complications or need for ICU care. Similarly intraoperative blood loss > 3500 ml, severity of curve or need of pelvic fixation did not increase the complication rate or need for ICU. DMD patients had higher chances of coccygodynia postoperatively.</p> <p>Conclusion</p> <p>Although posterior-only approach using pedicle screw fixation had good correction rate, complications were similar to previous reports. There were few unusual complications like coccygodynia.</p
Acanthaster planci Outbreak: Decline in Coral Health, Coral Size Structure Modification and Consequences for Obligate Decapod Assemblages
Although benthic motile invertebrate communities encompass the vast majority of coral reef diversity, their response to habitat modification has been poorly studied. A variety of benthic species, particularly decapods, provide benefits to their coral host enabling them to cope with environmental stressors, and as a result benefit the overall diversity of coral-associated species. However, little is known about how invertebrate assemblages associated with corals will be affected by global perturbations, (either directly or indirectly via their coral host) or their consequences for ecosystem resilience. Analysis of a ten year dataset reveals that the greatest perturbation at Moorea over this time was an outbreak of the corallivorous sea star Acanthaster planci from 2006 to 2009 impacting habitat health, availability and size structure of Pocillopora spp. populations and highlights a positive relationship between coral head size and survival. We then present the results of a mensurative study in 2009 conducted at the end of the perturbation (A. planci outbreak) describing how coral-decapod communities change with percent coral mortality for a selected coral species, Pocillopora eydouxi. The loss of coral tissue as a consequence of A. planci consumption led to an increase in rarefied total species diversity, but caused drastic modifications in community composition driven by a shift from coral obligate to non-obligate decapod species. Our study highlights that larger corals left with live tissue in 2009, formed a restricted habitat where coral obligate decapods, including mutualists, could subsist. We conclude that the size structure of Pocillopora populations at the time of an A. planci outbreak may greatly condition the magnitude of coral mortality as well as the persistence of local populations of obligate decapods
Potential therapeutic applications of microbial surface-activecompounds
Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies
- …