44 research outputs found
Trends in sexually transmitted infections in the Netherlands, combining surveillance data from general practices and sexually transmitted infection centers
<p>Abstract</p> <p>Background</p> <p>Sexually transmitted infections (STI) care in the Netherlands is primarily provided by general practitioners (GPs) and specialized STI centers. STI surveillance is based on data from STI centers, which show increasing numbers of clients. Data from a GP morbidity surveillance network were used to investigate the distribution in the provision of STI care and the usefulness of GP data in surveillance.</p> <p>Methods</p> <p>Data on STI-related episodes and STI diagnoses based on ICPC codes and, for chlamydia, prescriptions, were obtained from GP electronic medical records (EMRs) of the GP network and compared to data from STI centers from 2002 to 2007. Incidence rates were estimated for the total population in the Netherlands.</p> <p>Results</p> <p>The incidence of STI-consultations and -diagnoses increased substantially in recent years, both at GPs and STI centers. The increase in consultations was larger than the increase in diagnoses; Chlamydia incidence rose especially at STI centers. GPs were responsible for 70% of STI-related episodes and 80-85% of STI diagnoses. STI centers attract relatively younger and more often male STI-patients than GPs. Symptomatic STIs like <it>Herpes genitalis </it>and genital warts were more frequently diagnosed at GPs and chlamydia, gonorrhea and syphilis at STI centers.</p> <p>Conclusions</p> <p>GPs fulfill an important role in STI care, complementary to STI centers. Case definitions of STI could be improved, particularly by including laboratory results in EMRs. The contribution of primary care is often overlooked in STI health care. Including estimates from GP EMRs can improve the surveillance of STIs.</p
Genome-Wide Mapping of DNA Strand Breaks
Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed “damaged DNA immunoprecipitation” (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage
Genetic Evidence for Single-Strand Lesions Initiating Nbs1-Dependent Homologous Recombination in Diversification of Ig V in Chicken B Lymphocytes
Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3′ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3′ to 5′ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases
Regulation of the DNA Damage Response and Gene Expression by the Dot1L Histone Methyltransferase and the 53Bp1 Tumour Suppressor
Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined.Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L⁻/⁻ and wild type cells are equally resistant to ionising radiation, whereas 53Bp1⁻/⁻/Dot1L⁻/⁻ cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1⁻/⁻ cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line.Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin
Evidence-based Kernels: Fundamental Units of Behavioral Influence
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
RNAi Screening Implicates a SKN-1-Dependent Transcriptional Response in Stress Resistance and Longevity Deriving from Translation Inhibition
Caenorhabditis elegans SKN-1 (ortholog of mammalian Nrf1/2/3) is critical for oxidative stress resistance and promotes longevity under reduced insulin/IGF-1-like signaling (IIS), dietary restriction (DR), and normal conditions. SKN-1 inducibly activates genes involved in detoxification, protein homeostasis, and other functions in response to stress. Here we used genome-scale RNA interference (RNAi) screening to identify mechanisms that prevent inappropriate SKN-1 target gene expression under non-stressed conditions. We identified 41 genes for which knockdown leads to activation of a SKN-1 target gene (gcs-1) through skn-1-dependent or other mechanisms. These genes correspond to multiple cellular processes, including mRNA translation. Inhibition of translation is known to increase longevity and stress resistance and may be important for DR-induced lifespan extension. One model postulates that these effects derive from reduced energy needs, but various observations suggest that specific longevity pathways are involved. Here we show that translation initiation factor RNAi robustly induces SKN-1 target gene transcription and confers skn-1-dependent oxidative stress resistance. The accompanying increases in longevity are mediated largely through the activities of SKN-1 and the transcription factor DAF-16 (FOXO), which is required for longevity that derives from reduced IIS. Our results indicate that the SKN-1 detoxification gene network monitors various metabolic and regulatory processes. Interference with one of these processes, translation initiation, leads to a transcriptional response whereby SKN-1 promotes stress resistance and functions together with DAF-16 to extend lifespan. This stress response may be beneficial for coping with situations that are associated with reduced protein synthesis
Beyond barriers in studying disparities in women's access to health services in Ontario, Canada: a qualitative metasynthesis
Women live within complex and differing social, economic, and environmental circumstances that influence options to seek health care. In this article we report on a metasynthesis of qualitative research concerning access disparities for women in the Canadian province of Ontario, where there is a publicly funded health care system. We took a metastudy approach to analysis of results from 35 relevant qualitative articles to understand the conditions and conceptualizations of women’s inequitable access to health care. The articles’ authors attributed access disparities to myriad barriers. We focused our analysis on these barriers to understand the contributing social and political forces. We found that four major, sometimes countervailing, forces shaped access to health care: (a) contextual conditions, (b) constraints, (c) barriers, and (d) deterrents. Complex convergences of these forces acted to push, pull, obstruct, and/or repel women as they sought health care, resulting in different patterns of inequitable access.The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Canadian Institutes of Health Research (New Investigator Award, Angus; Summer Research Traineeship, Cechetto); and Echo: Improving Women’s Health in Ontario, Ontario Ministry of Health & Long Term Care (Bierman, POWER study)
Women’s strategies to achieve access to healthcare in Ontario, Canada: a meta-synthesis
As part of a mixed methods study on women’s access to the healthcare system in Ontario, Canada, we undertook a qualitative meta-synthesis to better understand the contextual conditions under which women access healthcare. An earlier phase of the synthesis demonstrated a series of factors that complicate women’s access to healthcare in Ontario. Here, we consider women’s agency in responding to these factors. We used metastudy methods to synthesise findings from qualitative studies published between January 2002 and December 2010. Studies were identified by searches of numerous databases, including CINAHL, MEDLINE, Scopus, Gender Studies Database and LGBT Life. Inclusion criteria included use of a qualitative research design; published in a peer-reviewed journal during the specified time period; included a sample at least partially recruited in Ontario; included distinct findings for women participants; and in English language. Studies were included in the final sample after appraisals using a qualitative research appraisal tool. We found that women utilised a spectrum of responses to forces limiting access to healthcare: mobilising financial, social and interpersonal resources; living out shortfalls by making do, doing without, and emotional self-management; and avoiding illness and maintaining health. Across the studies, women described their efforts to overcome challenges to accessing healthcare. However, there were evident limits to women’s agency and many of their strategies represented temporary measures rather than viable long-term solutions. While women can be resourceful and resilient in overcoming access disparities, systemic problems still need to be addressed. Women need to be involved in designing and implementing interventions to improve access to healthcare, and to address the root problems of these issues.Jan Angus was supported by a Canadian Institutes of Health Research New Investigator fund, which also supported this meta-synthesis. The POWER Study is funded by Echo: Improving Women’s Health in Ontario, an agency of the Ministry of Health and Long-Term Care. This article does not necessarily reflect the views of Echo or the Ministry