106 research outputs found

    A novel isolator-based system promotes viability of human embryos during laboratory processing

    Get PDF
    In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration

    Fluphenazine-induced acute and tardive dyskinesias in monkeys

    Full text link
    Five Cebus apella monkeys were treated with biweekly injections of fluphenazine enanthate (0.1–3.2 mg/kg IM). Three of these completed 1 full year of treatment, one injured its leg after 6 months of treatment and was killed, and another died of unknown causes after 9 months of treatment. All monkeys displayed abnormal movements corresponding to the early appearing extrapyramidal symptoms of neuroleptic-treated patients. These consisted initially of slowing or absence of volitional movement, trembling of the hands, trembling of the entire body, and general drowsy behavior. As treatment progessed, a variety of abnormal postures and movements appeared after each injection that were not exacerbated by drug withdrawal and, as tested at the end of the year, could be abolished or prevented with benztropine mesylate (0.2–0.5 mg/kg IM). The three monkeys that completed 1 year of treatment with fluphenazine were then withdrawn from the drug. After withdrawal, all three developed movements similar in appearance to those of patients with tardive dyskinesia (TD). Reinstitution of fluphenazine treatment, as tested in one monkey, abolished all movements resembling TD.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46432/1/213_2004_Article_BF00555204.pd

    KIR and HLA Loci Are Associated with Hepatocellular Carcinoma Development in Patients with Hepatitis B Virus Infection: A Case-Control Study

    Get PDF
    BACKGROUND: Natural killer (NK) cells activation has been reported to contribute to inflammation and liver injury during hepatitis B virus (HBV) infection both in transgenic mice and in patients. However, the role of NK cells in the process of HBV-associated hepatocellular carcinoma (HCC) development has not been addressed. Killer cell immunoglobulin-like receptors (KIRs) are involved in regulating NK cell activation through recognition of specific human leukocyte antigen (HLA) class I allotypes. METHODOLOGY/PRINCIPAL FINDINGS: To investigate whether KIR and HLA genes could influence the risk of HBV-associated HCC development, 144 HBV-infected patients with HCC and 189 well-matched HBV infectors with chronic hepatitis or cirrhosis as non-HCC controls were enrolled in this study. The presence of 12 loci of KIR was detected individually. HLA-A, -B, -C loci were genotyped with high-resolution. HLA-C group 1 homozygote (OR = 2.02; p = 0.005), HLA-Bw4-80I (OR = 2.67; p = 2.0E-04) and combination of full-length form and 22 bp-deleted form of KIR2DS4 (KIR2DS4/1D) (OR = 1.89; p = 0.017) were found associated with HCC incidence. When the combined effects of these three genetic factors were evaluated, more risk factors were observed correlating with higher odds ratios for HCC incidence (P trend = 7.4E-05). Because all the risk factors we found have been reported to result in high NK cell functional potential by previous studies, our observations suggest that NK cell activation may contribute to HBV-associated HCC development. CONCLUSIONS/SIGNIFICANCE: In conclusion, this study has identified significant associations that suggest an important role for NK cells in HCC incidence in HBV-infected patients. Our study is useful for HCC surveillance and has implications for novel personalized therapy strategy development aiming at HCC prevention in HBV-infected patients

    Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection

    Get PDF
    Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naΓ―ve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection

    Stat1 Phosphorylation Determines Ras Oncogenicity by Regulating p27Kip1

    Get PDF
    Inactivation of p27Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27Kip1. Our work reveals a novel functional link between Stat1 and p27Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors

    A comparison of low-dose risperidone to paroxetine in the treatment of panic attacks: a randomized, single-blind study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because a large proportion of patients with panic attacks receiving approved pharmacotherapy do not respond or respond poorly to medication, it is important to identify additional therapeutic strategies for the management of panic symptoms. This article describes a randomized, rater-blind study comparing low-dose risperidone to standard-of-care paroxetine for the treatment of panic attacks.</p> <p>Methods</p> <p>Fifty six subjects with a history of panic attacks were randomized to receive either risperidone or paroxetine. The subjects were then followed for eight weeks. Outcome measures included the Panic Disorder Severity Scale (PDSS), the Hamilton Anxiety Scale (Ham-A), the Hamilton Depression Rating Scale (Ham-D), the Sheehan Panic Anxiety Scale-Patient (SPAS-P), and the Clinical Global Impression scale (CGI).</p> <p>Results</p> <p>All subjects demonstrated a reduction in both the frequency and severity of panic attacks regardless of treatment received. Statistically significant improvements in rating scale scores for both groups were identified for the PDSS, the Ham-A, the Ham-D, and the CGI. There was no difference between treatment groups in the improvement in scores on the measures PDSS, Ham-A, Ham-D, and CGI. Post hoc tests suggest that subjects receiving risperidone may have a quicker clinical response than subjects receiving paroxetine.</p> <p>Conclusion</p> <p>We can identify no difference in the efficacy of paroxetine and low-dose risperidone in the treatment of panic attacks. Low-dose risperidone appears to be tolerated equally well as paroxetine. Low-dose risperidone may be an effective treatment for anxiety disorders in which panic attacks are a significant component.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT100457106</p
    • …
    corecore