178 research outputs found

    Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci

    Get PDF
    This is the final version. Available from Elsevier / Academic Press via the DOI in this record. Insecticides of the tetronic/tetramic acid family (cyclic ketoenols) are widely used to control sucking pests such as whiteflies, aphids and mites. They act as inhibitors of acetyl-CoA carboxylase (ACC), a key enzyme for lipid biosynthesis across taxa. While it is well documented that plant ACCs targeted by herbicides have developed resistance associated with mutations at the carboxyltransferase (CT) domain, resistance to ketoenols in invertebrate pests has been previously associated either with metabolic resistance or with non-validated candidate mutations in different ACC domains. A recent study revealed high levels of spiromesifen and spirotetramat resistance in Spanish field populations of the whitefly Bemisia tabaci that was not thought to be associated with metabolic resistance. We confirm the presence of high resistance levels (up to >640-fold) against ketoenol insecticides in both Spanish and Australian B. tabaci strains of the MED and MEAM1 species, respectively. RNAseq analysis revealed the presence of an ACC variant bearing a mutation that results in an amino acid substitution, A2083V, in a highly conserved region of the CT domain. F1 progeny resulting from reciprocal crosses between susceptible and resistant lines are almost fully resistant, suggesting an autosomal dominant mode of inheritance. In order to functionally investigate the contribution of this mutation and other candidate mutations previously reported in resistance phenotypes, we used CRISPR/Cas9 to generate genome modified Drosophila lines. Toxicity bioassays using multiple transgenic fly lines confirmed that A2083V causes high levels of resistance to commercial ketoenols. We therefore developed a pyrosequencing-based diagnostic assay to map the spread of the resistance alleles in field-collected samples from Spain. Our screening confirmed the presence of target-site resistance in numerous field-populations collected in Sevilla, Murcia and Almeria. This emphasizes the importance of implementing appropriate resistance management strategies to prevent or slow the spread of resistance through global whitefly populations.European Union Horizon 2020Australian cotton research and development corporatio

    Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    Get PDF
    Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations

    The changing carbon cycle of the coastal ocean

    Get PDF
    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget

    The changing causal foundations of cancer-related symptom clustering during the final month of palliative care: A longitudinal study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Symptoms tend to occur in what have been called symptom clusters. Early symptom cluster research was imprecise regarding the causal foundations of the coordinations between specific symptoms, and was silent on whether the relationships between symptoms remained stable over time. This study develops a causal model of the relationships between symptoms in cancer palliative care patients as they approach death, and investigates the changing associations among the symptoms and between those symptoms and well-being.</p> <p>Methods</p> <p>Complete symptom assessment scores were obtained for 82 individuals from an existing palliative care database. The data included assessments of pain, anxiety, nausea, shortness of breath, drowsiness, loss of appetite, tiredness, depression and well-being, all collected using the Edmonton Symptom Assessment System (ESAS). Relationships between the symptoms and well-being were investigated using a structural equation model.</p> <p>Results</p> <p>The model fit acceptably and explained between 26% and 83% of the variation in appetite, tiredness, depression, and well-being. Drowsiness displayed consistent effects on appetite, tiredness and well-being. In contrast, anxiety's effect on well-being shifted importantly, with a direct effect and an indirect effect through tiredness at one month, being replaced by an effect working exclusively through depression at one week.</p> <p>Conclusion</p> <p>Some of the causal forces explaining the variations in, and relationships among, palliative care patients' symptoms changed over the final month of life. This illustrates how investigating the causal foundations of symptom correlation or clustering can provide more detailed understandings that may contribute to improved control of patient comfort, quality of life, and quality of death.</p

    The processing and impact of dissolved riverine nitrogen in the Arctic Ocean

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP- 0229302 and NSF-OPP-0732985.Support to SET was additionally provided by an NSERC Postdoctoral Fellowship

    Estimates of new and total productivity in central Long Island Sound from in situ measurements of nitrate and dissolved oxygen

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 36 (2013): 74-97, doi:10.1007/s12237-012-9560-5.Biogeochemical cycles in estuaries are regulated by a diverse set of physical and biological variables that operate over a variety of time scales. Using in situ optical sensors, we conducted a high-frequency time-series study of several biogeochemical parameters at a mooring in central Long Island Sound from May to August 2010. During this period, we documented well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into various signal components, we estimated the amount of variation that could be ascribed to each process. Primary production and surface wind stress explained 59% and 19%, respectively, of the variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and sunlight on about one-quarter of study days. Daytime nitrate minima and dissolved oxygen maxima occurred nearly simultaneously on the majority (> 80%) of days during the study period; both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the following night. Changes in nitrate concentrations were used to generate daily estimates of new primary production (182 ± 37 mg C m-2 d-1) and the f-ratio (0.25), i.e., the ratio of production based on nitrate to total production. These estimates, the first of their kind in Long Island Sound, were compared to values of community respiration, primary productivity, and net ecosystem metabolism, which were derived from in situ measurements of oxygen concentration. Daily averages of the three metabolic parameters were 1660 ± 431, 2080 ± 419, and 429 ± 203 mg C m-2 d-1, respectively. While the system remained weakly autotrophic over the duration of the study period, we observed very large day-to-day differences in the f-ratio and in the various metabolic parameters.This work was supported by the Yale Institute for Biospheric Studies, the Sounds Conservancy of the Quebec-Labrador Foundation, and the Yale School of Forestry and Environmental Studies Carpenter-Sperry Fund.2014-01-0

    A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase Z<sup>S</sup>) and long (tRNase Z<sup>L</sup>) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase Z<sup>S </sup>and eukaryotic-type tRNase Z<sup>L</sup>, and one minor type, <it>Thermotoga maritima </it>(TM)-type tRNase Z<sup>S</sup>. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant <it>Arabidopsis thaliana</it>. It is unknown whether multiple tRNase Zs found in <it>A. thaliana </it>is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom.</p> <p>Results</p> <p>We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase Z<sup>S</sup>s are present only in basal land plants and green algae, the TM-type tRNase Z<sup>S</sup>s are widespread in green plants. The protein sequences of the TM-type tRNase Z<sup>S</sup>s identified in green plants are similar to those of the bacterial-type tRNase Z<sup>S</sup>s but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase Z<sup>S</sup>s may not recognize the CCA sequence as an anti-determinant.</p> <p>Conclusions</p> <p>Our findings substantially expand the current repertoire of the TM-type tRNase Z<sup>S</sup>s and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.</p

    Molecular architecture and function of the hemidesmosome

    Get PDF
    • …
    corecore