33 research outputs found

    Phase 1-2a multicenter dose-escalation study of ezatiostat hydrochloride liposomes for injection (Telintra®, TLK199), a novel glutathione analog prodrug in patients with myelodysplastic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ezatiostat hydrochloride liposomes for injection, a glutathione S-transferase P1-1 inhibitor, was evaluated in myelodysplastic syndrome (MDS). The objectives were to determine the safety, pharmacokinetics, and hematologic improvement (HI) rate. Phase 1-2a testing of ezatiostat for the treatment of MDS was conducted in a multidose-escalation, multicenter study. Phase 1 patients received ezatiostat at 5 dose levels (50, 100, 200, 400 and 600 mg/m<sup>2</sup>) intravenously (IV) on days 1 to 5 of a 14-day cycle until MDS progression or unacceptable toxicity. In phase 2, ezatiostat was administered on 2 dose schedules: 600 mg/m<sup>2 </sup>IV on days 1 to 5 or days 1 to 3 of a 21-day treatment cycle.</p> <p>Results</p> <p>54 patients with histologically confirmed MDS were enrolled. The most common adverse events were grade 1 or 2, respectively, chills (11%, 9%), back pain (15%, 2%), flushing (19%, 0%), nausea (15%, 0%), bone pain (6%, 6%), fatigue (0%, 13%), extremity pain (7%, 4%), dyspnea (9%, 4%), and diarrhea (7%, 4%) related to acute infusional hypersensitivity reactions. The concentration of the primary active metabolites increased proportionate to ezatiostat dosage. Trilineage responses were observed in 4 of 16 patients (25%) with trilineage cytopenia. Hematologic Improvement-Erythroid (HI-E) was observed in 9 of 38 patients (24%), HI-Neutrophil in 11 of 26 patients (42%) and HI-Platelet in 12 of 24 patients (50%). These responses were accompanied by improvement in clinical symptoms and reductions in transfusion requirements. Improvement in bone marrow maturation and cellularity was also observed.</p> <p>Conclusion</p> <p>Phase 2 studies of ezatiostat hydrochloride liposomes for injection in MDS are supported by the tolerability and HI responses observed. An oral formulation of ezatiostat hydrochloride tablets is also in phase 2 clinical development.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov: NCT00035867</p

    Field Longevity of a Fluorescent Protein Marker in an Engineered Strain of the Pink Bollworm, Pectinophora gossypiella (Saunders)

    Get PDF
    The cotton pest, pink bollworm (Pectinophora gossypiella (Saunders)), is a significant pest in most cotton-growing areas around the world. In southwestern USA and northern Mexico, pink bollworm is the target of the sterile insect technique (SIT), which relies on the mass-release of sterile pink bollworm adults to over-flood the wild population and thereby reduce it over time. Sterile moths reared for release are currently marked with a dye provided in their larval diet. There are concerns, however, that this marker fails from time to time, leading to sterile moths being misidentified in monitoring traps as wild moths. This can lead to expensive reactionary releases of sterile moths. We have developed a genetically marked strain that is engineered to express a fluorescent protein, DsRed2, which is easily screened under a specialised microscope. In order to test this marker under field conditions, we placed wild-type and genetically marked moths on traps and placed them in field cages. The moths were then screened, in a double-blind fashion, for DsRed2 fluorescence at regular intervals to determine marker reliability over time. The marker was shown to be robust in very high temperatures and generally proved reliable for a week or longer. More importantly, genotyping of moths on traps by PCR screening of the moths was 100% correct. Our findings indicate that this strain - and fluorescent protein markers in general - could make a valuable contribution to SIT

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Plastic ingestion in an emaciated red kite (Milvus milvus) in England

    No full text
    The red kite (Milvus milvus) was successfully re-introduced into England in 1989, although the population continues to face anthropogenic threats. In this report, we describe evidence of plastic ingested in the ventriculus of an adult male red kite that was emaciated. In addition, dried blood was found on the feathers overlying both wings, and subcutaneous haemorrhage was identified. Toxicology tests revealed toxic levels (>100 ng/g) of second-generation anticoagulant rodenticides (difenacoum 3.0 ng/g, brodifacoum 734.9 ng/g) in the liver of this red kite. Three possible contributors to mortality were considered: starvation from the ingestion of plastic preventing normal digestion, collision-related trauma and second-generation anticoagulant rodenticide poisoning. This is the first report of plastic ingestion in a red kite. The case highlights the importance of carrying out postmortem examinations as part of post-release health surveillance and identifies plastic ingestion as a potential anthropogenic threat facing the red kite population in England
    corecore