2,639 research outputs found

    Bifurcation Phenomena. A Short Introductory Tutorial with Examples

    Get PDF

    Activity-directed expansion of a series of antibacterial agents

    Get PDF
    The feasibility of using activity-directed synthesis to drive antibacterial discovery was investigated. An array of 220 Pd-catalysed microscale reactions was executed, and the crude product mixtures were evaluated for activity against Staphylococcus aureus. Scale-up of the hit reactions, purification and evaluation, enabled expansion of a class of antibacterial quinazolinones. The novel antibacterials had MICs from 0.016 μg mL−1 (i.e. 38 nM) to 2–4 μg mL−1 against S. aureus ATCC29213

    Calmodulin Binds a Highly Extended HIV-1 MA Protein That Refolds Upon Its Release

    Get PDF
    Calmodulin (CaM) expression is upregulated upon HIV-1 infection and interacts with proteins involved in viral processing, including the multifunctional HIV-1 MA protein. We present here the results of studies utilizing small-angle neutron scattering with contrast variation that, when considered in the light of earlier fluorescence and NMR data, show CaM binds MA in an extended open-clamp conformation via interactions with two tryptophans that are widely spaced in sequence and space. The interaction requires a disruption of the MA tertiary fold such that MA becomes highly extended in a long snakelike conformation. The CaM-MA interface is extensive, covering ∼70% of the length of the MA such that regions known to be important in MA interactions with critical binding partners would be impacted. The CaM conformation is semiextended and as such is distinct from the classical CaM-collapse about short α-helical targets. NMR data show that upon dissociation of the CaM-MA complex, either by the removal of Ca2+ or increasing ionic strength, MA reforms its native tertiary contacts. Thus, we observe a high level of structural plasticity in MA that may facilitate regulation of its activities via intracellular Ca2+-signaling during viral processing. © 2012 Biophysical Society

    What Can Information Encapsulation Tell Us About Emotional Rationality?

    Get PDF
    What can features of cognitive architecture, e.g. the information encapsulation of certain emotion processing systems, tell us about emotional rationality? de Sousa proposes the following hypothesis: “the role of emotions is to supply the insufficiency of reason by imitating the encapsulation of perceptual modes” (de Sousa 1987: 195). Very roughly, emotion processing can sometimes occur in a way that is insensitive to what an agent already knows, and such processing can assist reasoning by restricting the response-options she considers. This paper aims to provide an exposition and assessment of de Sousa’s hypothesis. I argue information encapsulation is not essential to emotion-driven reasoning, as emotions can determine the relevance of response-options even without being encapsulated. However, I argue encapsulation can still play a role in assisting reasoning by restricting response-options more efficiently, and in a way that ensures which options emotions deem relevant are not overridden by what the agent knows. I end by briefly explaining why this very feature also helps explain how emotions can, on occasion, hinder reasoning

    Relation of substance use disorders to mortality, accident and emergency department attendances, and hospital admissions: A 13-year population-based cohort study in Hong Kong

    Get PDF
    BACKGROUND: The impact of substance use disorders (SUD) in an Asian population has not been fully explored. We aimed to assess the risk of mortality, accident and emergency (A&E) department attendances, and hospital admissions associated with SUD in a population-based cohort study. METHOD: Patients diagnosed with SUD in public A&E departments from 2004 to 2016 (N = 8,423) were identified in the Clinical Database Analysis and Reporting System of the Hong Kong Hospital Authority and 1:1 matched to patients without SUD by propensity score (N = 6,074 in each group). Relative risks of mortality, A&E attendances and hospital admissions were assessed using Cox regression and Hurdle negative binomial regression. RESULTS: Patients with SUD had higher mortality (hazard ratio=1.43; 95% confidence interval [CI]=1.26-1.62) and more often died from poisoning or toxicity and injuries. The odds ratio (OR) for A&E attendances and all-cause hospital admissions associated with SUD were 2.80 (95% CI=2.58-3.04) and 3.54 (95% CI=3.26-3.83), respectively. The impact of SUD on the above outcomes was greatest among school-aged individuals (≤ 21 years) and decreased with age. The relative risk of mental disorder-related hospital admissions was much higher than that for infections, respiratory diseases, and cardiovascular diseases. In patients with SUD, ketamine and amphetamine use were associated with increased A&E attendances than opioid use. CONCLUSIONS: SUD was associated with increased mortality, A&E attendances and hospital admissions, especially in school-aged individuals. Our findings suggest prioritising early treatment and preventive interventions for school-aged individuals and focusing on the management of comorbid mental disorders and the use of ketamine and amphetamine

    Thermodynamical Metrics and Black Hole Phase Transitions

    Full text link
    An important phase transition in black hole thermodynamics is associated with the divergence of the specific heat with fixed charge and angular momenta, yet one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's energy metric reveals this phase transition. In this paper, we introduce a new thermodynamical metric based on the Hessian matrix of several free energy. We demonstrate, by studying various charged and rotating black holes, that the divergence of the specific heat corresponds to the curvature singularity of this new metric. We further investigate metrics on all thermodynamical potentials generated by Legendre transformations and study correspondences between curvature singularities and phase transition signals. We show in general that for a system with n-pairs of intensive/extensive variables, all thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional space. We also generalize the Ruppeiner metrics and they are all conformal to the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished and the Hawking-Page phase transition clarified; to appear in JHE

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Simultaneous Detection of FISH Signals and Bromo-Deoxyuridine Incorporation in Fixed Tissue Cultured Cells

    Get PDF
    FISH (Fluorescence in situ hybridization) is a powerful technique that detects and localises specific DNA sequences on metaphase chromosomes, interphase nuclei or chromatin fibres. When coupled to BrdU (5-Bromo 2-deoxy-uridine) labeling of newly replicated DNA, the replication properties of different DNA sequences can be analysed. However, the technique for the detection of BrdU incorporation is time consuming, and relies on acidic pH buffer treatments, that prevent use of pH sensitive fluorochromes such as FITC (Fluoro-isothiocianate) during FISH. In this work, we describe a simplified protocol that allows the simultaneous detection of FISH signals and BrdU incorporation. Since the technique does not involve paraformaldehyde for cell fixation, or formamide for denaturation of the target DNA and in post-hybridisation washes, it represents a safer alternative to classical FISH techniques
    corecore