66 research outputs found

    Validation of FASTFISH-ID: A new commercial platform for rapid fish species authentication via universal closed-tube barcoding

    Get PDF
    Seafood represents up to 20% of animal protein consumption in global food consumption and is a critical dietary and income resource for the world's population. Currently, over 30% of marine fish stocks are harvested at unsustainable levels, and the industry faces challenges related to Illegal, Unregulated and Unreported (IUU) fishing. Accurate species identification is one critical component of successful stock management and helps combat fraud. Existing DNA-based technologies permit identification of seafood even when morphological features are removed, but are either too time-consuming, too expensive, or too specific for widespread use throughout the seafood supply chain. FASTFISH-ID is an innovative commercial platform for fish species authentication, employing closed-tube barcoding in a portable device. This method begins with asymmetric PCR amplification of the full length DNA barcode sequence and subsequently interrogates the resulting single-stranded DNA with a universal set of Positive/Negative probes labeled in two fluorescent colors. Each closed-tube reaction generates two species-specific fluorescent signatures that are then compared to a cloud-based library of previously validated fluorescent signatures. This novel approach results in rapid, automated species authentication without the need for complex, time consuming, identification by DNA sequencing, or repeated analysis with a panel of species-specific tests. Performance of the FASTFISH-ID platform was assessed in a blinded study carried out in three laboratories located in the UK and North America. The method exhibited a 98% success rate among the participating laboratories when compared to species identification via conventional DNA barcoding by sequencing. Thus, FASTFISH-ID is a promising new platform for combating seafood fraud across the global seafood supply chain. Ā© 2021 The Author

    The first small-molecule inhibitors of members of the ribonuclease E family

    Get PDF
    The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5ā€²-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E

    ASCI 2010 contrast media guideline for cardiac imaging: a report of the Asian Society of Cardiovascular Imaging cardiac computed tomography and cardiac magnetic resonance imaging guideline working group

    Get PDF
    The use of contrast media for cardiac imaging becomes increasing as the widespread of cardiac CT and cardiac MR. A radiologist needs to carefully consider the indication and the injection protocol of contrast media to be used as well as the possibility of adverse effect. There are several guidelines for contrast media in western countries. However, these are focusing the adverse effect of contrast media. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and created a guideline, which summarizes the integrated knowledge of contrast media for cardiac imaging. In cardiac imaging, coronary artery evaluation is feasible by non-contrast MR angiography, which can be an alternative examination in high risk patients for the use of iodine contrast media. Furthermore, the body habitus of Asian patients is usually smaller than that of their western counterparts. This necessitates modifications in the injection protocol and in the formula for calculation of estimated glomerular filtration rate. This guideline provided fundamental information for the use of contrast media for Asian patients in cardiac imaging
    • ā€¦
    corecore