75 research outputs found
Macropinocytosis in Different Cell Types: Similarities and Differences
Macropinocytosis is a unique pathway of endocytosis characterised by the nonspecific internalisation of large amounts of extracellular fluid, solutes and membrane in large endocytic vesicles known as macropinosomes. Macropinocytosis is important in a range of physiological processes, including antigen presentation, nutrient sensing, recycling of plasma proteins, migration and signalling. It has become apparent in recent years from the study of specialised cells that there are multiple pathways of macropinocytosis utilised by different cell types, and some of these pathways are triggered by different stimuli. Understanding the physiological function of macropinocytosis requires knowledge of the regulation and fate of the macropinocytosis pathways in a range of cell types. Here, we compare the mechanisms of macropinocytosis in different primary and immortalised cells, identify the gaps in knowledge in the field and discuss the potential approaches to analyse the function of macropinocytosis in vivo
Mpeg1 is not essential for antibacterial or antiviral immunity, but is implicated in antigen presentation.
To control infections phagocytes can directly kill invading microbes. Macrophage-expressed gene 1 (Mpeg1), a pore-forming protein sometimes known as perforin-2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68-positive endolysosomal compartment, and that it exists predominantly as a processed, two-chain disulfide-linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response
Human Cytomegalovirus Fcγ Binding Proteins gp34 and gp68 Antagonize Fcγ Receptors I, II and III
Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or/and gp68, HCMV elicited a much stronger activation of FcγRIIIA/CD16, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRIII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIIA, FcγRIIA and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.DFG grant He 2526/6-2.European Commission grants QLRT-2001-01112 and MRTN-CT-2005-019248.Helmholtz Association through VISTRIE VH-VI-242.UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí
Dendritic cells and influenza A virus infection
Influenza A virus (IAV) is a dangerous virus equipped with the potential to evoke widespread pandemic disease. The 2009 H1N1 pandemic highlights the urgency for developing effective therapeutics against IAV infection. Vaccination is a major weapon to combat IAV and efforts to improve current regimes are critically important. Here, we will review the role of dendritic cells (DCs), a pivotal cell type in the initiation of robust IAV immunity. The complexity of DC subset heterogeneity in the respiratory tract and lymph node that drains the IAV infected lung will be discussed, together with the varied and in some cases, conflicting contributions of individual DC populations to presenting IAV associated antigen to T cells
Autophagy and mechanisms of effective immunity
Macroautophagy (autophagy) is a cellular pathway facilitating several critical functions. First, autophagy is a major pathway of degradation. It enables elimination of microbes that have invaded intracellular compartments. In addition, it promotes degradation of damaged cellular content, thereby acting to limit inflammatory signals. Second, autophagy is a major trafficking pathway, shuttling content between the cytosol and the lysosomal compartment. Given these two key roles, autophagy can have significant and sometimes unexpected consequences on mechanisms that initiate robust immunity. Here, we will discuss the impact of autophagy on pathways of innate and adaptive immune responses including microbe elimination, inflammatory cytokine production, antigen processing and T and B lymphocyte immunity
Intersection of autophagy with pathways of antigen presentation
Traditionally, macroautophagy (autophagy) is viewed as a pathway of cell survival. Autophagy ensures the elimination of damaged or unwanted cytosolic components and provides a source of cellular nutrients during periods of stress. Interestingly, autophagy can also directly intersect with, and impact, other major pathways of cellular function. Here, we will review the contribution of autophagy to pathways of antigen presentation. The autophagy machinery acts to modulate both MHCI and MHCII antigen presentation. As such autophagy is an important participant in pathways that elicit host cell immunity and the elimination of infectious pathogens
Dendritic cell Flt3-regulation, roles and repercussions for immunotherapy
Dendritic cells (DCs) are essential for initiating immune responses. Depending on the environment, the type of DC and the way in which they interact with T cells, these immune responses can be beneficial or detrimental. DCs can be exploited as cellular vectors for vaccines against infection and cancer. The development and maintenance of DCs is dependent on the FMS-like tyrosine kinase 3 (Flt3)/Flt3 ligand (Flt3L) signaling cascade. Flt3 is also one of the most commonly mutated genes in acute myeloid leukemia and as such represents an attractive drug target. In this review, Flt3 is discussed with a particular focus on DCs. We detail the lifecycle of Flt3, from transcription to degradation, and interrogate recent studies as to how this pathway can be manipulated for immunotherapy, vaccination and treatment of autoimmune disease
Modulation of antigen presentation by intracellular trafficking
Processing and loading of antigen into major histocompatibility complex molecules (MHC) occurs in specific intracellular compartments. Accessing MHC loading compartments requires trafficking via specific pathways, some of which have yet to be fully characterized. For MHC I, cross-presentation involves antigen trafficking to a specialised compartment. We review the features of this compartment and how it is accessed by different mechanisms of antigen capture and internalization. We also summarize advances in understanding how antigen efficiently accesses the MHC II loading compartment, with particular focus on the role of autophagy. Understanding the mechanisms that control how antigen is trafficked to specific compartments for loading and presentation is crucial if these pathways are to be manipulated more effectively in settings of vaccination
Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection.We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions
- …
