64 research outputs found

    Insomnia symptoms and repressive coping in a sample of older Black and White women

    Get PDF
    BACKGROUND: This study examined whether ethnic differences in insomnia symptoms are mediated by differences in repressive coping styles. METHODS: A total of 1274 women (average age = 59.36 ± 6.53 years) participated in the study; 28% were White and 72% were Black. Older women in Brooklyn, NY were recruited using a stratified, cluster-sampling technique. Trained staff conducted face-to-face interviews lasting 1.5 hours acquiring sociodemographic data, health characteristics, and risk factors. A sleep questionnaire was administered and individual repressive coping styles were assessed. Fisher's exact test and Spearman and Pearson analyses were used to analyze the data. RESULTS: The rate of insomnia symptoms was greater among White women [74% vs. 46%; χ(2 )= 87.67, p < 0.0001]. Black women scored higher on the repressive coping scale than did White women [Black = 37.52 ± 6.99, White = 29.78 ± 7.38, F(1,1272 )= 304.75, p < 0.0001]. We observed stronger correlations between repressive coping and insomnia symptoms for Black [r(s )= -0.43, p < 0.0001] than for White women [r(s )= -0.18, p < 0.0001]. Controlling for variation in repressive coping, the magnitude of the correlation between ethnicity and insomnia symptoms was substantially reduced. Multivariate adjustment for differences in sociodemographics, health risk factors, physical health, and health beliefs and attitudes had little effect on the relationships. CONCLUSION: Relationships between ethnicity and insomnia symptoms are jointly dependent on the degree of repressive coping, suggesting that Black women may be reporting fewer insomnia symptoms because of a greater ability to route negative emotions from consciousness. It may be that Blacks cope with sleep problems within a positive self-regulatory framework, which allows them to deal more effectively with sleep-interfering psychological processes to stressful life events and to curtail dysfunctional sleep-interpreting processes

    The incidence of unpleasant dreams after sub-anaesthetic ketamine

    Get PDF
    Ketamine is an N-methyl-D-aspartate (NMDA)receptor antagonist with psychotogenic effects and for whichthere are diverse reports of whether pleasant or unpleasantdreams result during anaesthesia, post-operatively or aftersub-anaesthetic use. The aim was to assess in healthy volunteers the incidence ofunpleasant dreams over the three nights after receiving asub-anaesthetic dose of ketamine, in comparison to placebo,and with retrospective home nightmare frequency as acovariate.Thirty healthy volunteers completed questionnairesabout retrospective home dream recall and were then giveneither ketamine or placebo. Ketamine resulted in significantly more meandream unpleasantness relative to placebo and caused athreefold increase in the odds ratio for the incidence of anunpleasant dream. The number of dreams reported over thethree nights did not differ between the groups. Theincidence of unpleasant dreams after ketamine use waspredicted by retrospectively assessed nightmare frequencyat home.Ketamine causes unpleasant dreams over thethree post-administration nights. This may be evidence of aresidual psychotogenic effect that is not found on standardself-report symptomatology measures or a result of disturbedsleep electrophysiology. The results have theoretical implications for the relationship between nightmares and schizotypy

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease
    corecore