4,920 research outputs found

    An inducible transgene expression system for regulated phenotypic modification of human embryonic stem cells

    Get PDF
    Self-renewing pluripotent human embryonic stem (hES) cells are capable of regenerating such non-dividing cells as neurons and cardiomyocytes for therapies and can serve as an excellent experimental model for studying early human development. Both the spatial and temporal relationships of gene expression play a crucial role in determining differentiation; to obtain a better understanding of hES cell differentiation, it will be necessary to establish an inducible system in hES cells that enables specific transgene(s) to reversibly and conditionally express (1) at specific levels and (2) at particular time points during development. Using lentivirus (LV)-mediated gene transfer and a tetracycline-controlled trans-repressor (TR), we first established in hES cells a doxycycline (DOX)-inducible expression system of green fluorescent protein (GFP) to probe its reversibility and kinetics. Upon the addition of DOX, the percentage of GFP + hES cells increased time dependently: The time at which 50% of all green cells appeared (T 50 on) was 119.5 ± 3.2 h; upon DOX removal, GFP expression declined with a half-time (T 50 off) of 127.7 ± 3.9 h and became completely silenced at day 8. Both the proportion and total mean fluorescence intensity (MFI) were dose-dependent (EC 50 = 24.5 ± 2.2 ng/ml). The same system when incorporated into murine (m) ES cells similarly exhibited reversible dose-dependent responses with a similar sensitivity (EC 50 =49.5 ± 8.5 ng/ml), but the much faster kinetics (T 50 on = 35.5 ± 5.5 h, T 50 off = 71.5 ± 2.4 hours). DOX-induced expression of the Kir2.1 channels in mES and hES cells led to robust expression of the inwardly rectifying potassium (K +) current and thereby hyperpolarized the resting membrane potential (RMP). We conclude that the LV-inducible system established presents a unique tool for probing differentiation. © 2008 Mary Ann Liebert, Inc.published_or_final_versio

    Deficiency of Capicua disrupts bile acid homeostasis

    Get PDF
    Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L-/-) mice have impaired bile acid (BA) homeostasis associated with induction of proinflammatory cytokines. We discovered that several drug metabolism and BA transporter genes were down-regulated in Cic-L-/- liver, and that BA was increased in the liver and serum whereas bile was decreased within the gallbladder of Cic-L-/- mice. We also found that levels of proinflammatory cytokine genes were up-regulated in Cic-L-/- liver. Consistent with this finding, levels of hepatic transcriptional regulators, such as hepatic nuclear factor 1 alpha (HNF1 alpha), CCAAT/enhancer-binding protein beta (C/EBP beta), forkhead box protein A2 (FOXA2), and retinoid X receptor alpha (RXR alpha), were markedly decreased in Cic-L-/- mice. Moreover, induction of tumor necrosis factor alpha (Tnf alpha) expression and decrease in the levels of FOXA2, C/EBP beta, and RXRa were found in Cic-L-/- liver before BA was accumulated, suggesting that inflammation might be the cause for the cholestasis in Cic-L-/- mice. Our findings indicate that CIC is a critical regulator of BA homeostasis, and that its dysfunction might be associated with chronic liver disease and metabolic disorders.open11810Ysciescopu

    Magnetic anisotropy study of ion-beam synthesized cobalt nanocrystals

    Get PDF
    The magnetic properties of Co nanocrystals in crystalline Al2 O3 and amorphous Si O2 are investigated. In contrast to the Si O2 matrix, the Al2 O3 matrix provides higher magnetic anisotropy and coercive field for Co nanocrystals. Using x-ray photoemission spectroscopy, it is found that a Co Al2 O4 layer forms in Co implanted region. Transmission electron microscopy shows that this Co Al2 O4 layer is grown epitaxially around Co nanocrystals. The higher coercive field of the Co nanocrystals in Al2 O3 is attributed to the presence of antiferromagnetic Co Al2 O4 layers. © 2006 American Institute of Physics

    FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development

    Get PDF
    Objective: It has been shown that Mindbomb (Mib), an E3 Ubiquitin ligase, is an essential modulator of Notch signaling during development. However, its effects on vascular development remain largely unknown

    Attention deficit hyperactivity symptoms predict problematic mobile phone use

    Get PDF
    Attention-deficit-hyperactivity disorder (ADHD) is the most commonly diagnosed childhood disorder characterised by inattention, hyperactivity/impulsivity, or both. Some of the key traits of ADHD have previously been linked to addictive and problematic behaviours. The aim of the present study was to examine the relationship between problematic mobile phone use, smartphone addiction risk and ADHD symptoms in an adult population. A sample of 273 healthy adult volunteers completed the Adult ADHD Self-Report Scale (ASRS), the Mobile Phone Problem Usage Scale (MPPUS), and the Smartphone Addiction Scale (SAS). A significant positive correlation was found between the ASRS and both scales. More specifically, inattention symptoms and age predicted smartphone addiction risk and problematic mobile phone use. Our results suggest that there is a positive relationship between ADHD traits and problematic mobile phone use. In particular, younger adults with higher level of inattention symptoms could be at higher risk of developing smartphone addiction. The implication of our findings for theoretical frameworks of problematic mobile phone use and clinical practice are discussed

    Allelic based gene-gene interactions in rheumatoid arthritis

    Get PDF
    The detection of gene-gene interaction is an important approach to understand the etiology of rheumatoid arthritis (RA). The goal of this study is to identify gene-gene interaction of SNPs at the allelic level contributing to RA using real data sets (Problem 1) of North American Rheumatoid Arthritis Consortium (NARAC) provided by Genetic Analysis Workshop 16 (GAW16). We applied our novel method that can detect the interaction by a definition of nonrandom association of alleles that occurs when the contribution to RA of a particular allele inherited in one gene depends on a particular allele inherited at other unlinked genes. Starting with 639 single-nucleotide polymorphisms (SNPs) from 26 candidate genes, we identified ten two-way interacting genes and one case of three-way interacting genes. SNP rs2476601 on PTPN22 interacts with rs2306772 on SLC22A4, which interacts with rs881372 on TRAF1 and rs2900180 on C5, respectively. SNP rs2900180 on C5 interacts with rs2242720 on RUNX1, which interacts with rs881375 on TRAF1. Furthermore, rs2476601 on PTPN22 also interacts with three SNPs (rs2905325, rs1476482, and rs2106549) in linkage disequilibrium (LD) on IL6. The other three SNPs (rs2961280, rs2961283, and rs2905308) in LD on IL6 interact with two SNPs (rs477515 and rs2516049) on HLA-DRB1. SNPs rs660895 and rs532098 on HLA-DRB1 interact with rs2834779 and four SNPs in LD on RUNX1. Three-way interacting genes of rs10229203 on IL6, rs4816502 on RUNX1, and rs10818500 on C5 were also detected

    Self-Affirmation Improves Problem-Solving under Stress

    Get PDF
    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. © 2013 Creswell et al

    Evaporation Mechanism of Sn and SnS from Liquid Fe: Part II: Residual Site and Evaporation Kinetics via Sn(g) and SnS(g)

    Get PDF
    Evaporation of Sn from molten steel was experimentally investigated for Fe-Sn-S alloy with low initial S (0.0007<[pct S] 0< 0.05) or with high initial S (0.55<[pct S](0) < 0.894) at 1873 K (1600 degrees C) using an electromagnetic levitation melting technique, in order to clarify the role of S on the evaporation mechanism of Sn. It was found that increasing initial S concentration, [pct S](0), decreased the second-order evaporation rate constant of Sn (k(SnS)), but there was a residual rate for the evaporation even at high [pct S](0). The obtained residual rate constant, k(SnS)(r) , was 1.4 x 10(-9) m(4) mol(-1) s(-1) at 1873 K (1600 degrees C). Evaporation of Sn under virtually no S condition ([pct S](0) = 0.0007) was also measured and corresponding first-order rate constant was determined to be 3.49 x 10(-7) m s(-1) at 1873 K (1600 degrees C). A comprehensive model for the Sn evaporation from molten Fe-Sn-S alloy was developed in the present study, under the condition where mass transfer in gas and liquid phases were fast and interfacial chemical reaction controlled the evaporation of Sn. The model equation is able to represent the evaporation of Sn in the forms of Sn(g) and SnS(g) simultaneously, from very low S melt (when there is no S) to very high S melt investigated in the present study up to similar to 0.9 mass pct. Gradual transition of major evaporation species from SnS(g) to Sn(g) was well accounted for by the developed model.open1146Nsciescopu

    Evaporation Mechanism of Sn and SnS from Liquid Fe: Part III. Effect of C on Sn Removal

    Get PDF
    To understand the effect of C on Sn evaporation from liquid iron in the view of ferrous scrap recycling, the evaporation of Sn from various liquid Fe-C-S-Sn alloys was experimentally investigated. A series of gas-liquid reactions was carried out at 1873 K (1600 degrees C) using an electromagnetic levitation melting technique, where mass transfers in gas phase and liquid phase did not significantly affect the reaction rate. It was found that CS2(g) is a major gas species evaporating from Fe-C-S alloy (initial S content [pct S](0): 0.028 to 0.502 mass pct), and Fe-C-S-Sn alloy ([pct S](0): 0.063 to 0.560 mass pct), thereby competing with SnS for S in the liquid alloy. A model equation for the evaporation rate of CS2(g) was established using the experimental data for the Fe-C-S alloys. The chemical reaction rate constant for the CS2(g) evaporation (k(CS2)(R)) was obtained as 4.24 x 10(-12) m(7) mol(-2) s(-1), and the residual rate constant (k(CS2)(r)) was 4.24 x 10(-16) m(7) mol(-2) s(-1), both at 1873 K (1600 degrees C). Roll of C on the evaporation of Sn in Fe-C-Sn alloy was confirmed to be the increase of activity coefficient of Sn. By taking into account (1) the evaporation of Sn(g), SnS(g), and CS2(g), and (2) the increasing activity coefficient of Sn and S by C, a comprehensive model for the evaporation rate of Sn and S in the Fe-C-Sn-S alloy was developed. The calculation results by the developed model in the present study showed good agreement with the experimental results. Some applications of the current model are presented in the view of increasing the Sn removal rate.open1135Nsciescopu

    Robust test method for time-course microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a time-course microarray experiment, the expression level for each gene is observed across a number of time-points in order to characterize the temporal trajectories of the gene-expression profiles. For many of these experiments, the scientific aim is the identification of genes for which the trajectories depend on an experimental or phenotypic factor. There is an extensive recent body of literature on statistical methodology for addressing this analytical problem. Most of the existing methods are based on estimating the time-course trajectories using parametric or non-parametric mean regression methods. The sensitivity of these regression methods to outliers, an issue that is well documented in the statistical literature, should be of concern when analyzing microarray data.</p> <p>Results</p> <p>In this paper, we propose a robust testing method for identifying genes whose expression time profiles depend on a factor. Furthermore, we propose a multiple testing procedure to adjust for multiplicity.</p> <p>Conclusions</p> <p>Through an extensive simulation study, we will illustrate the performance of our method. Finally, we will report the results from applying our method to a case study and discussing potential extensions.</p
    corecore