107 research outputs found
An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-
We describe an experiment to search for a new vector boson A' with weak
coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass
range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings
arise naturally from a small kinetic mixing of the "dark photon" A' with the
photon -- one of the very few ways in which new forces can couple to the
Standard Model -- and have received considerable attention as an explanation of
various dark matter related anomalies. A' bosons are produced by radiation off
an electron beam, and could appear as narrow resonances with small production
cross-section in the trident e+e- spectrum. We summarize the experimental
approach described in a proposal submitted to Jefferson Laboratory's PAC35,
PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of
the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory
(CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten
wire mesh targets, and measures the resulting e+e- pairs to search for the A'
using the High Resolution Spectrometer and the septum magnet in Hall A. With a
~1 month run, APEX will achieve very good sensitivity because the statistics of
e+e- pairs will be ~10,000 times larger in the explored mass range than any
previous search for the A' boson. These statistics and the excellent mass
resolution of the spectrometers allow sensitivity to alpha'/alpha one to three
orders of magnitude below current limits, in a region of parameter space of
great theoretical and phenomenological interest. Similar experiments could also
be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table
Singlet Portal to the Hidden Sector
Ultraviolet physics typically induces a kinetic mixing between gauge singlets
which is marginal and hence non-decoupling in the infrared. In singlet
extensions of the minimal supersymmetric standard model, e.g. the
next-to-minimal supersymmetric standard model, this furnishes a well motivated
and distinctive portal connecting the visible sector to any hidden sector which
contains a singlet chiral superfield. In the presence of singlet kinetic
mixing, the hidden sector automatically acquires a light mass scale in the
range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with
R-parity conservation, superparticles produced at the LHC invariably cascade
decay into hidden sector particles. Since the hidden sector singlet couples to
the visible sector via the Higgs sector, these cascades necessarily produce a
Higgs boson in an order 0.01 - 1 fraction of events. Furthermore,
supersymmetric cascades typically produce highly boosted, low-mass hidden
sector singlets decaying visibly, albeit with displacement, into the heaviest
standard model particles which are kinematically accessible. We study
experimental constraints on this broad class of theories, as well as the role
of singlet kinetic mixing in direct detection of hidden sector dark matter. We
also present related theories in which a hidden sector singlet interacts with
the visible sector through kinetic mixing with right-handed neutrinos.Comment: 12 pages, 5 figure
Dark Force Detection in Low Energy e-p Collisions
We study the prospects for detecting a light boson X with mass m_X < 100 MeV
at a low energy electron-proton collider. We focus on the case where X
dominantly decays to e+ e- as motivated by recent "dark force" models. In order
to evade direct and indirect constraints, X must have small couplings to the
standard model (alpha_X 10 MeV).
By comparing the signal and background cross sections for the e- p e+ e- final
state, we conclude that dark force detection requires an integrated luminosity
of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde
Searches for Long Lived Neutral Particles
An intriguing possibility for TeV scale physics is the existence of neutral
long lived particles (LOLIPs) that subsequently decay into SM states. Such
particles are many cases indistinguishable from missing transverse energy (MET)
at colliders. We propose new methods to search for these particles using
neutrino telescopes. We study their detection prospects, assuming production
either at the LHC or through dark matter (DM) annihilations in the Sun and the
Earth. We find that the sensitivity for LOLIPs produced at the LHC is limited
by luminosity and detection energy thresholds. On the other hand, in the case
of DM annihilation into LOLIPs, the sensitivity of neutrino telescopes is
promising and may extend beyond the reach of upcoming direct detection
experiments. In the context of low scale hidden sectors weakly coupled to the
SM, such indirect searches allow to probe couplings as small as 10^-15.Comment: 22 pages, 6 figure
Spread Supersymmetry
In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan
and environmental constraints on the dark matter density may exclude a large
range of \tilde{m} from the reheating temperature after inflation down to
values that yield a LSP mass of order a TeV. After selection effects, the
distribution for \tilde{m} may prefer larger values. A single environmental
constraint from dark matter can then lead to multi-component dark matter,
including both axions and the LSP, giving a TeV-scale LSP lighter than the
corresponding value for single-component LSP dark matter.
If SUSY breaking is mediated to the SM sector at order X^* X, only squarks,
sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino
mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed
by a further loop factor. This Spread SUSY spectrum has two versions; the
Higgsino masses are generated in one from supergravity giving a wino LSP and in
the other radiatively giving a Higgsino LSP. The environmental restriction on
dark matter fixes the LSP mass to the TeV domain, so that the squark and
slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study
the spectrum, dark matter and collider signals of these two versions of Spread
SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in
cosmic rays arise from dark matter annihilations in the halo; exotic short
charged tracks occur at the LHC, at least for the wino LSP; and there are the
eventual possibilities of direct detection of dark matter and detailed
exploration of the TeV-scale states at a future linear collider. Gauge coupling
unification is as in minimal SUSY theories.
If SUSY breaking is mediated at order X, a much less hierarchical spectrum
results---similar to that of the MSSM, but with the superpartner masses 1--2
orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure
A New Era in the Quest for Dark Matter
There is a growing sense of `crisis' in the dark matter community, due to the
absence of evidence for the most popular candidates such as weakly interacting
massive particles, axions, and sterile neutrinos, despite the enormous effort
that has gone into searching for these particles. Here, we discuss what we have
learned about the nature of dark matter from past experiments, and the
implications for planned dark matter searches in the next decade. We argue that
diversifying the experimental effort, incorporating astronomical surveys and
gravitational wave observations, is our best hope to make progress on the dark
matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Nebuliser therapy in the intensive care unit
The relationship between identity, lived experience, sexual practices and the language through which these are conveyed has been widely debated in sexuality literature. For example, ‘coming out’ has famously been conceptualised as a ‘speech act’ (Sedgwick 1990) and as a collective narrative (Plummer 1995), while a growing concern for individuals’ diverse identifications in relations to their sexual and gender practices has produced interesting research focusing on linguistic practices among LGBT-identified individuals (Leap 1995; Kulick 2000; Cameron and Kulick 2006; Farqhar 2000). While an explicit focus on language remains marginal to literature on sexualities (Kulick 2000), issue of language use and translation are seldom explicitly addressed in the growing literature on intersectionality. Yet intersectional perspectives ‘reject the separability of analytical and identity categories’ (McCall 2005:1771), and therefore have an implicit stake in the ‘vernacular’ language of the researched, in the ‘scientific’ language of the researcher and in the relationship of continuity between the two. Drawing on literature within gay and lesbian/queer studies and cross-cultural studies, this chapter revisits debates on sexuality, language and intersectionality. I argue for the importance of giving careful consideration to the language we choose to use as researchers to collectively define the people whose experiences we try to capture. I also propose that language itself can be investigated as a productive way to foreground how individual and collective identifications are discursively constructed, and to unpack the diversity of lived experience. I address intersectional complexity as a methodological issue, where methodology is understood not only as the methods and practicalities of doing research, but more broadly as ‘a coherent set of ideas about the philosophy, methods and data that underlie the research process and the production of knowledge’ (McCall 2005:1774). My points are illustrated with examples drawn from my ethnographic study on ‘lesbian’ identity in urban Russia, interspersed with insights from existing literature. In particular, I aim to show that an explicit focus on language can be a productive way to explore the intersections between the global, the national and the local in cross-cultural research on sexuality, while also addressing issues of positionality and accountability to the communities researched
The Cosmology of Composite Inelastic Dark Matter
Composite dark matter is a natural setting for implementing inelastic dark
matter - the O(100 keV) mass splitting arises from spin-spin interactions of
constituent fermions. In models where the constituents are charged under an
axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark
matter scatters inelastically off Standard Model nuclei and can explain the
DAMA/LIBRA annual modulation signal. This article describes the early Universe
cosmology of a minimal implementation of a composite inelastic dark matter
model where the dark matter is a meson composed of a light and a heavy quark.
The synthesis of the constituent quarks into dark mesons and baryons results in
several qualitatively different configurations of the resulting dark matter
hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte
- …