48 research outputs found

    Laser writable high-K dielectric for van der Waals nano-electronics

    Get PDF
    This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.Like silicon-based semiconductor devices, van der Waals heterostructures will require integration with high-K oxides. This is needed to achieve suitable voltage scaling, improved performance as well as allowing for added functionalities. Unfortunately, commonly used high-k oxide deposition methods are not directly compatible with 2D materials. Here we demonstrate a method to embed a multi-functional few nm thick high-k oxide within van der Waals devices without degrading the properties of the neighbouring 2D materials. This is achieved by in-situ laser oxidation of embedded few layer HfS2 crystals. The resultant oxide is found to be in the amorphous phase with a dielectric constant of k~15 and break-down electric fields in the range of 0.5-0.6 V/nm. This transformation allows for the creation of a variety of fundamental nano-electronic and opto-electronic devices including, flexible Schottky barrier field effect transistors, dual gated graphene transistors as well as vertical light emitting and detecting tunnelling transistors. Furthermore, upon dielectric break-down, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching between two resistance states. This allows for the creation of resistive switching random access memories (ReRAMs). We believe that this method of embedding a high-k oxide within complex van der Waals heterostructures could play an important role in future flexible multi-functional van der Waals devices.F.W acknowledges support from the Royal Academy of Engineering. J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1). S.R. and M.F.C. acknowledge financial support from EPSRC (Grant no. EP/K010050/1, EP/M001024/1, EP/M002438/1), from Royal Society international Exchanges Scheme 2016/R1, from The Leverhulme trust (grant title “Quantum Revolution” and "Quantum Drums"). A.P Rooney and S.J Haigh acknowledge support from the EPSRC postdoctoral fellowship and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement ERC-2016-STG-EvoluTEM-715502) and the Defence Threat Reduction Agency (HDTRA1-12-1-0013). I.A. acknowledges financial support from The European Commission Marie Curie Individual Fellowships (Grant number 701704)

    Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways

    Get PDF
    BACKGROUND: In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M(2)R and M(3)R). Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca(2+)](i )includes the activation of sphingosine kinases (SPHK) and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P). Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known. METHODS: To address this issue, we studied precision cut lung slices derived from FVB and M(2)R-KO and M(3)R-KO mice. RESULTS: In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS) and N, N-dimethyl-sphingosine (DMS) but not by N-acetylsphingosine (N-AcS), a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M(3)R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M(2)R-KO mice. Quantitative RT-PCR revealed that the disruption of the M(2)R and M(3)R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways. CONCLUSION: These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M(2)R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance

    A Single Nucleotide Change Affects Fur-Dependent Regulation of sodB in H. pylori

    Get PDF
    Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB) is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur) in the absence of iron (apo-Fur regulation) [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter

    Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    Get PDF
    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity

    Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    Get PDF
    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress

    Individuals with chronic low back pain have greater difficulty in engaging in positive lifestyle behaviours than those without back pain: An assessment of health literacy

    Get PDF
    Background: Despite the large volume of research dedicated to understanding chronic low back pain (CLBP), patient outcomes remain modest while healthcare costs continue to rise, creating a major public health burden. Health literacy - the ability to seek, understand and utilise health information - has been identified as an important factor in the course of other chronic conditions and may be important in the aetiology of CLBP. Many of the currently available health literacy measurement tools are limited since they measure narrow aspects of health literacy. The Health Literacy Measurement Scale (HeLMS) was developed recently to measure broader elements of health literacy. The aim of this study was to measure broad elements of health literacy among individuals with CLBP and without LBP using the HeLMS.Methods: Thirty-six community-dwelling adults with CLBP and 44 with no history of LBP responded to the HeLMS. Individuals were recruited as part of a larger community-based spinal health study in Western Australia. Scores for the eight domains of the HeLMS as well as individual item responses were compared between the groups.Results: HeLMS scores were similar between individuals with and without CLBP for seven of the eight health literacy domains (p &gt; 0.05). However, compared to individuals with no history of LBP, those with CLBP had a significantly lower score in the domain &lsquo;Patient attitudes towards their health&rsquo; (mean difference [95% CI]: 0.46 [0.11- 0.82]) and significantly lower scores for each of the individual items within this domain (p &lt; 0.05). Moderate effect sizes ranged from d = 0.47-0.65.Conclusions: Although no differences were identified in HeLMS scores between the groups for seven of the health literacy domains, adults with CLBP reported greater difficulty in engaging in general positive health behaviours. This aspect of health literacy suggests that self-management support initiatives may benefit individuals with CLBP.<br /

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels
    corecore