63 research outputs found

    The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung

    Get PDF
    Persistent inflammation and associated excessive oxidative stress have been crucially implicated in quartz-induced pulmonary diseases, including fibrosis and cancer. We have investigated the significance of the particle surface reactivity of respirable quartz dust in relation to the in vivo generation of reactive oxygen and nitrogen species (ROS/RNS) and the associated induction of oxidative stress responses in the lung. Therefore, rats were intratracheally instilled with 2 mg quartz (DQ12) or quartz whose surface was modified by either polyvinylpyridine-N-oxide (PVNO) or aluminium lactate (AL). Seven days after instillation, the bronchoalveolar lavage fluid (BALF) was analysed for markers of inflammation (total/differential cell counts), levels of pulmonary oxidants (H(2)O(2), nitrite), antioxidant status (trolox equivalent antioxidant capacity), as well as for markers of lung tissue damage, e.g. total protein, lactate dehydrogenase and alkaline phosphatase. Lung homogenates as well as sections were investigated regarding the induction of the oxidative DNA-lesion/oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) using HPLC/ECD analysis and immunohistochemistry, respectively. Homogenates and sections were also investigated for the expression of the bifunctional apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1) by Western blotting and immunohistochemistry. Significantly increased levels of H(2)O(2 )and nitrite were observed in rats treated with non-coated quartz, when compared to rats that were treated with either saline or the surface-modified quartz preparations. In the BALF, there was a strong correlation between the number of macrophages and ROS, as well as total cells and RNS. Although enhanced oxidant generation in non-coated DQ12-treated rats was paralleled with an increased total antioxidant capacity in the BALF, these animals also showed significantly enhanced lung tissue damage. Remarkably however, elevated ROS levels were not associated with an increase in 8-OHdG, whereas the lung tissue expression of APE/Ref-1 protein was clearly up-regulated. The present data provide further in vivo evidence for the crucial role of particle surface properties in quartz dust-induced ROS/RNS generation by recruited inflammatory phagocytes. Our results also demonstrate that quartz dust can fail to show steady-state enhanced oxidative DNA damage in the respiratory tract, in conditions were it elicits a marked and persistent inflammation with associated generation of ROS/RNS, and indicate that this may relate to compensatory induction of APE/Ref-1 mediated base excision repair

    Genetic and pharmacological inhibition of CDK9 drives neutrophil apoptosis to resolve inflammation in zebrafish in vivo

    Get PDF
    Neutrophilic inflammation is tightly regulated and subsequently resolves to limit tissue damage and promote repair. When the timely resolution of inflammation is dysregulated, tissue damage and disease results. One key control mechanism is neutrophil apoptosis, followed by apoptotic cell clearance by phagocytes such as macrophages. Cyclin-dependent kinase (CDK) inhibitor drugs induce neutrophil apoptosis in vitro and promote resolution of inflammation in rodent models. Here we present the first in vivo evidence, using pharmacological and genetic approaches, that CDK9 is involved in the resolution of neutrophil-dependent inflammation. Using live cell imaging in zebrafish with labelled neutrophils and macrophages, we show that pharmacological inhibition, morpholino-mediated knockdown and CRISPR/cas9-mediated knockout of CDK9 enhances inflammation resolution by reducing neutrophil numbers via induction of apoptosis after tailfin injury. Importantly, knockdown of the negative regulator La-related protein 7 (LaRP7) increased neutrophilic inflammation. Our data show that CDK9 is a possible target for controlling resolution of inflammation

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation

    Get PDF
    Made available in DSpace on 2015-08-19T13:49:23Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) ma_martins_etal_IOC-2105.pdf: 3830001 bytes, checksum: 2629ef32ff4c6dfb811625d5ef43b612 (MD5) Previous issue date: 2015Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.University of Edinburgh. The Queen’s Medical Research Institute. Medical Research Council Centre for Inflammation Research. Edinburgh, Scotland, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Laboratório de Sinalização na Inflamação. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Microbiologia. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Laboratório de Patologia Geral. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Laboratório de Sinalização na Inflamação. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Inflamação. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Belo Horizonte, MG, Brasil.University of Edinburgh. The Queen’s Medical Research Institute. Medical Research Council Centre for Inflammation Research. Edinburgh, Scotland, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Laboratório de Resolução da Resposta Inflamatória. Laboratório de Imunofarmacologia. Departamento de Bioquímica e Imunologia. Belo Horizonte, MG, Brasil.Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox −/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils

    “Awake” extracorporeal membrane oxygenation (ECMO): pathophysiology, technical considerations, and clinical pioneering

    Get PDF
    Venovenous extracorporeal membrane oxygenation (vv-ECMO) has been classically employed as a rescue therapy for patients with respiratory failure not treatable with conventional mechanical ventilation alone. In recent years, however, the timing of ECMO initiation has been readdressed and ECMO is often started earlier in the time course of respiratory failure. Furthermore, some centers are starting to use ECMO as a first line of treatment, i.e., as an alternative to invasive mechanical ventilation in awake, non-intubated, spontaneously breathing patients with respiratory failure ("awake" ECMO). There is a strong rationale for this type of respiratory support as it avoids several side effects related to sedation, intubation, and mechanical ventilation. However, the complexity of the patient-ECMO interactions, the difficulties related to respiratory monitoring, and the management of an awake patient on extracorporeal support together pose a major challenge for the intensive care unit staff. Here, we review the use of vv-ECMO in awake, spontaneously breathing patients with respiratory failure, highlighting the pros and cons of this approach, analyzing the pathophysiology of patient-ECMO interactions, detailing some of the technical aspects, and summarizing the initial clinical experience gained over the past years
    corecore