48 research outputs found

    Expression of the inhibitor of DNA-binding (ID)-1 protein as an angiogenic mediator in tumour advancement of uterine cervical cancers

    Get PDF
    The ID protein, an inhibitor of basic helix-loop-helix (HLH) transcription factors, has been involved in multiple cellular processes. To investigate the association between tumour advancement and ID expressions of uterine cervical cancers, the levels of ID-1, ID-2 and ID-3 mRNAs were determined by real-time reverse transcription-polymerase chain reaction and the histoscore with the localisation of ID-1 was determined by immunohistochemistry and patient survival in 60 patients. ID-1 histoscores and mRNA levels both significantly (P<0.05) increased in uterine cervical cancers according to clinical stage regardless of histopathological type or lymph node metastasis. Furthermore, the 36-month survival rate of the 30 patients with high ID-1 was poor (60%), whereas that of the other 30 patients with low ID-1 was significantly higher (83%). ID-1 histoscores and mRNA levels significantly (P<0.0001) correlated with microvessel counts in uterine cervical cancers. Tumour cells show mostly diffuse to strong cytoplasmic expression of ID-1 and also very faint expression in endothelial cells. Moreover, ID-1 expression not only correlated with microvessel counts but also correlated significantly with histoscore. Therefore, ID-1 might work on tumour advancement through angiogenic activity and is considered to be a candidate for a prognostic indicator in uterine cervical cancers

    Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitor of DNA binding/Inhibitor of differentiation 4 (<it>ID4</it>) is a critical factor for cell proliferation and differentiation in normal vertebrate development. <it>ID4</it> has regulative functions for differentiation and growth of the developing brain. The role of <it>ID1</it>, <it>ID2</it> and <it>ID3</it> are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of <it>ID3</it> expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of <it>ID4</it> in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. </p> <p>Methods</p> <p><it>ID4</it> promoter methylation, <it>ID4</it> mRNA expression and <it>ID4</it> protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of <it>ID4</it> promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of <it>ID4</it> promoter methylation with <it>ID4</it> mRNA and <it>ID4</it> protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between <it>ID4</it> promoter methylation and clinicopathological parameters. </p> <p>Results</p> <p>Frequent <it>ID4</it> promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between <it>ID4</it> promoter methylation and loss of <it>ID4</it> expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with <it>ID4</it> promoter methylation showed distinct loss of <it>ID4</it> expression on both transcription and protein level. Interestingly, <it>ID4</it> promoter methylation was a factor for unfavourable recurrence-free survival (P=0.036) and increased risk for lymph node metastasis (P=0.030). </p> <p>Conclusion</p> <p>ID4 is indeed a novel tumour suppressor gene in normal human breast tissue and is epigenetically silenced during cancer development, indicating increased risk for tumour relapse. Thus, <it>ID4</it> methylation status could serve as a prognostic biomarker in human breast cancer.</p

    Noninvasive positive pressure ventilation for acute respiratory failure in children: a concise review

    Get PDF
    Noninvasive positive pressure ventilation (NPPV) refers to the delivery of mechanical respiratory support without the use of endotracheal intubation (ETI). The present review focused on the effectiveness of NPPV in children > 1 month of age with acute respiratory failure (ARF) due to different conditions. ARF is the most common cause of cardiac arrest in children. Therefore, prompt recognition and treatment of pediatric patients with pending respiratory failure can be lifesaving. Mechanical respiratory support is a critical intervention in many cases of ARF. In recent years, NPPV has been proposed as a valuable alternative to invasive mechanical ventilation (IMV) in this acute setting. Recent physiological studies have demonstrated beneficial effects of NPPV in children with ARF. Several pediatric clinical studies, the majority of which were noncontrolled or case series and of small size, have suggested the effectiveness of NPPV in the treatment of ARF due to acute airway (upper or lower) obstruction or certain primary parenchymal lung disease, and in specific circumstances, such as postoperative or postextubation ARF, immunocompromised patients with ARF, or as a means to facilitate extubation. NPPV was well tolerated with rare major complications and was associated with improved gas exchange, decreased work of breathing, and ETI avoidance in 22-100% of patients. High FiO2 needs or high PaCO2 level on admission or within the first hours after starting NPPV appeared to be the best independent predictive factors for the NPPV failure in children with ARF. However, many important issues, such as the identification of the patient, the right time for NPPV application, and the appropriate setting, are still lacking. Further randomized, controlled trials that address these issues in children with ARF are recommended

    The endocannabinoid system controls food intake via olfactory processes

    Get PDF
    Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior

    The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall

    Get PDF
    Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs

    Biocontrol Potential of Forest Tree Endophytes

    Get PDF
    Peer reviewe
    corecore