25 research outputs found

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    Thin-section Computed Tomography findings before and after azithromycin treatment of neutrophilic reversible lung allograft dysfunction

    Get PDF
    Recently a novel subgroup of bronchiolitis obliterans syndrome (BOS) has been described in patients after lung transplantation with high neutrophil counts in broncho-alveolar lavage and recovery of lung functional decline with azithromycin treatment. We aimed to describe the thin-section computed tomography (CT) findings of these neutrophilic reversible allograft dysfunction (NRAD) patients before and after azithromycin.status: publishe

    Cardiothoracic CT: one-stop-shop procedure? Impact on the management of acute pulmonary embolism

    Get PDF
    In the treatment of pulmonary embolism (PE) two groups of patients are traditionally identified, namely the hemodynamically stable and instable groups. However, in the large group of normotensive patients with PE, there seems to be a subgroup of patients with an increased risk of an adverse outcome, which might benefit from more aggressive therapy than the current standard therapy with anticoagulants. Risk stratification is a commonly used method to define subgroups of patients with either a high or low risk of an adverse outcome. In this review the clinical parameters and biomarkers of myocardial injury and right ventricular dysfunction (RVD) that have been suggested to play an important role in the risk stratification of PE are described first. Secondly, the use of more direct imaging techniques like echocardiography and CT in the assessment of RVD are discussed, followed by a brief outline of new imaging techniques. Finally, two risk stratification models are proposed, combining the markers of RVD with cardiac biomarkers of ischemia to define whether patients should be admitted to the intensive care unit (ICU) and/or be given thrombolysis, admitted to the medical ward, or be safely treated at home with anticoagulant therapy

    A review of bronchiolitis obliterans syndrome and therapeutic strategies

    Get PDF
    Lung transplantation is an important treatment option for patients with advanced lung disease. Survival rates for lung transplant recipients have improved; however, the major obstacle limiting better survival is bronchiolitis obliterans syndrome (BOS). In the last decade, survival after lung retransplantation has improved for transplant recipients with BOS. This manuscript reviews BOS along with the current therapeutic strategies, including recent outcomes for lung retransplantation

    Índice de enfisema pulmonar em coorte de pacientes sem doença pulmonar conhecida: influência da idade Emphysema index in a cohort of patients with no recognizable lung disease: influence of age

    No full text
    OBJETIVO: Investigar os efeitos da idade no enfisema pulmonar, com base nos valores do índice de enfisema (IE) em uma coorte de pacientes que nunca fumou e que não possuía doença pulmonar conhecida. MÉTODOS: Foram revisados exames de TC, considerados normais, de 315 pacientes. Tabagismo, doenças cardiorrespiratórias e exposição a drogas que poderiam causar doença pulmonar foram critérios de exclusão. Dessa coorte, selecionamos 32 pacientes (16 homens e 16 mulheres), igualmente divididos em dois grupos (idade < 50 anos e idade > 50 anos), que foram pareados por gênero e índice de massa corpórea. Realizou-se a quantificação do enfisema utilizando um programa específico. O IE foi calculado com um limiar de -950 UH. O volume pulmonar total (VPT) e a densidade pulmonar média (DPM) também foram avaliados. RESULTADOS: As médias gerais de VPT, DPM e IE foram 5.027 mL, -827 UH e 2,54%, respectivamente. A comparação entre os mais velhos e os mais novos mostrou as seguintes médias: VPT, 5.229 mL vs. 4.824 mL (p > 0,05); DPM, -846 UH vs. -813 UH (p < 0,04) e IE, 3,30% vs. 1,28% (p < 0,001). Houve correlações significativas entre IE e idade (r = 0,66; p = 0,001), IE e VPT (r = 0,58; p = 0,001) e IE e DPM (r = -0,67; p < 0,001). O IE previsto por idade foi definido através da equação de regressão (r² = 0,43): p50(IE) = 0,049 × idade - 0,5353. CONCLUSÕES: É importante considerar a influência da idade na quantificação de enfisema em pacientes com mais de 50 anos. Baseado na análise de regressão, valores de IE de 2,6%, 3,5% e 4,5% podem ser considerados normais para pacientes com 30, 50 e 70 anos, respectivamente.<br>OBJECTIVE: To investigate the effects of age on pulmonary emphysema, based on the values of the emphysema index (EI) in a cohort of patients who had never smoked and who had no recognizable lung disease. METHODS: We reviewed the CT scans, reported as normal, of 315 patients. Exclusion criteria were a history of smoking, cardiorespiratory disease, and exposure to drugs that could cause lung disease. From this cohort, we selected 32 patients (16 men and 16 women), matched for gender and body mass index, who were divided equally into two groups by age (< 50 years and > 50 years). We quantified emphysema using a computer program specific to that task. The EI was calculated with a threshold of -950 HU. We also evaluated total lung volume (TLV) and mean lung density (MLD). RESULTS: The overall means for TLV, MLD, and EI were 5,027 mL, -827 HU, and 2.54%, respectively. Mean values in the older and younger groups, respectively, were as follows: for TLV, 5,229 mL vs. 4,824 mL (p > 0.05); for MLD, -846 HU vs. -813 HU (p < 0.04); and for EI, 3.30% vs. 1.28% (p < 0.001). Significant correlations were found between EI and age (r = 0.66; p = 0.001), EI and TLV (r = 0.58; p = 0.001), and EI and MLD (r = -0.67; p < 0.001). The predicted EI per age was defined by the regression equation (r² = 0.43): p50(EI) = 0.049 × age - 0.5353. CONCLUSIONS: It is important to consider the influence of age when quantifying emphysema in patients over 50 years of age. Based on the regression analysis, EI values of 2.6%, 3.5%, and 4.5% can be considered normal for patients 30, 50, and 70 years of age, respectively
    corecore